(Å) 旋转 Pristine 52776 ± 0.24 90.00 ± 3.4 540 ± 5.14 旋转 1% DMSO 15098 ± 0.26 4.92 ± 4.8 168 ± 2.10 旋转 3% DMSO 11700 ± 0.13 200.00 ± 0.02 10000 ± 8.1 旋转 5% DMSO 7500 ± 0.03 12.00 ± 1.7 12 ± 0.03 喷雾 Pristine 100000 ± 596 9.00 ± 3.2 810 ± 8.3 喷雾 1% DMSO 29117 ± 754 4.46 ± 4.1 3416 ± 6.47 喷雾 3% DMSO 22788 ± 459 82.00 ± 1.59 9102 ± 4.89 喷雾 5% DMSO 15000 ± 0.03 50.00 ± 0.01 750 ± 0.01
从图 8A 的 SEM 结果中还可以观察到,纯 EP 树脂的断口形貌具有非常光滑的横截面和光滑的结构,呈现出明显的河流状形貌,这是典型的脆性断裂特征,表明纯 EP 树脂表现出有限的力学性能。然而,当添加适当含量的 S-TiO 2 (4.0 wt%) 时,EP 树脂的
摘要。ZnO 纳米粒子 (NPs) 用于光学、电子、传感、激光、光催化装置等。这些应用不仅依赖于形貌,还依赖于尺寸,可通过表面导向剂进行定制。在本研究中,我们研究了 4 个带有尿素/硫脲基团的三足配体(即 1、2、3 和 4)对表面改性 ZnO NPs(即 1Z、2Z、3Z 和 4Z)形貌的影响,这些配体分别在室温(30-40 C)碱性条件下合成。配体用于在室温下获得具有各种形貌的表面改性 ZnO。 1Z、2Z、3Z 和 4Z 分别观察到延伸的六边形纳米棒(* 2-3 微米长度和 * 400 纳米宽度)、层状(薄片自组装形成层状结构)、多分散盘状[微米级(2-3 微米)和纳米级(300-400 纳米)颗粒和纳米棒(1-1.5 微米长度和 130-165 纳米宽度)状形态。1Z 纳米棒具有尖端,而 4Z 纳米棒具有半圆形端部。已经通过罗丹明 B 染料降解评估了这些表面改性 ZnO NP 的光催化研究。
自从分离出来以来,石墨烯就因其独特的性质而受到学术界和工业界越来越多的关注。然而,“我的材料是什么”的障碍阻碍了进一步的商业化。X 射线光电子能谱 (XPS) 被认为是一种确定元素和化学组成的首选方法。在这项工作中,研究了石墨烯颗粒形貌对 XPS 结果的影响,并调查了其作为 X 射线能量的函数的关系,使用具有 Al K 𝜶 辐射的传统 XPS 和使用 Cr K 𝜶 辐射的硬 X 射线光电子能谱 (HAXPES)。因此,信息深度在 10 到 30 纳米之间变化。为此,对两种含有石墨烯纳米片的商业粉末进行了比较,它们的横向尺寸约为 100 纳米或在微米范围内。这些较大的粉末以石墨烯层堆栈的形式存在,用扫描电子显微镜进行检查。然后用氧或氟对这两种粒子进行功能化。发现石墨烯颗粒的尺寸会影响功能化程度。只有 XPS 和 HAXPES 的结合才可以检测颗粒最外层表面甚至堆叠层的功能化,并为功能化过程提供新的见解。
图 3 为在含有 HEDP 的亚硫酸盐金溶液中, 恒电流密度为 5 mA ∙ cm -2 , 沉积时间为 1 min、5 min、10 min 和 20 min 时镀层的形貌与外观(HAuCl 4 ∙ 4H 2 O 0.01 mol ∙ L -1 , Na 2 SO 3 0.24 mol ∙ L -1 , HEDP 0.05 mol ∙ L -1 , 添加剂 0.1 mL ∙ L -1 )。沉积时间 1 min 和 5 min 时镀层颗粒细小致密(图 3a、图 3b), 外观光亮(图 3f 上部)。沉积 10 min 时, 颗粒呈现金字塔形貌(图 3c)。当沉积时间延长至15和20分钟时,涂层形貌没有发生明显变化(图3d,图3e),涂层外观仍然保持暗亮状态(图3f下部)。当沉积20分钟时,涂层呈暗亮金色
图 2 . a) 新鲜状态下 S-1 SAM 的 AFM 形貌图像。b) 对 SAM S-1 施加 0.6 V 电化学电位 1 分钟后获得的 SAM S-2 的 AFM 形貌图像。c) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 的 AFM 形貌图像。d) 新鲜制备的 SAM S-1 上水滴的静态图像。e) 对 SAM S-1 施加 +0.6 V 电化学电位 1 分钟后获得的 SAM S-2 上水滴的静态图像。f) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 上水滴的静态图像。 S-1 SAM 的 XPS 高分辨率 Si 2p 光谱(g)新鲜制备、(h)在 +0.6 V 下氧化,和(i)在 + 1.5 V 下氧化。
自从分离出来以来,石墨烯就因其独特的性质而受到学术界和工业界越来越多的关注。然而,“我的材料是什么”的障碍阻碍了进一步的商业化。X 射线光电子能谱 (XPS) 被认为是一种确定元素和化学组成的首选方法。在这项工作中,研究了石墨烯颗粒形貌对 XPS 结果的影响,并调查了其作为 X 射线能量的函数的关系,使用具有 Al K 𝜶 辐射的传统 XPS 和使用 Cr K 𝜶 辐射的硬 X 射线光电子能谱 (HAXPES)。因此,信息深度在 10 到 30 纳米之间变化。为此,对两种含有石墨烯纳米片的商业粉末进行了比较,它们的横向尺寸约为 100 纳米或在微米范围内。这些较大的粉末以石墨烯层堆栈的形式存在,用扫描电子显微镜进行检查。然后用氧或氟对这两种粒子进行功能化。发现石墨烯颗粒的尺寸会影响功能化程度。只有 XPS 和 HAXPES 的结合才可以检测颗粒最外层表面甚至堆叠层的功能化,并为功能化过程提供新的见解。
Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:本文研究了不同水热工艺原位合成Fe2O3/还原氧化石墨烯(rGO)负极材料。扫描电子显微镜(SEM)分析发现,不同的工艺可以控制石墨烯和Fe2O3的形貌,水热原位法和油酸辅助水热原位法制备的Fe2O3形貌主要由细小的球体组成,而PVP辅助水热原位法制备的Fe2O3形貌呈现多孔椭球体,石墨烯呈现典型的褶皱和小块状。X射线衍射分析(XRD)分析结果表明,以不同的方式生成的Fe2O3/还原氧化石墨烯(rGO)材料均具有良好的结晶性,加入GO后氧化铁的晶型没有发生变化。均发生了还原,并在25°附近出现特征峰,说明有大量还原石墨烯存在。电化学性能测试结果发现,不同工艺制备的活性材料对锂离子电池循环性能的影响不同,综合比较3种工艺制备的Fe 2 O 3 /rGO电化学性能最好。
在本节中,我们将回顾一些重要的研究,这些研究涉及有机半导体基薄膜晶体管的溶液加工性和电荷载流子迁移率,以及它们在有机气体传感器制造中的应用。首先,研究致力于探索有机半导体溶剂的可能性,从而调节半导体形貌和电荷传输。45–47 例如,Kim 等人研究了不同溶剂对 TIPS 并五苯薄膜形貌和结晶度的影响。48 沸点较高的溶剂(如氯苯和二甲苯)可形成结晶度较高的树枝状形貌,而沸点较低的溶剂(如氯仿)则可形成结晶度较低的非晶态薄膜。Choi 等人研究了溶剂沸点、晶粒尺寸和电荷传输之间的相关性。 29 使用高沸点氯苯旋涂 TIPS 并五苯可产生晶粒尺寸大、结晶度高的晶体,其迁移率比氯仿等低沸点溶剂高 5 个数量级。Hwang 等人报道了包括氯苯和四氢化萘在内的不同溶剂对 TIPS 并五苯/聚合物共混物的垂直相分离和组成结构的影响。49 使用四氢化萘溶剂时,观察到明显的相分离和增强的结晶,这归因于更高的迁移率值。Ozorio 等人发现了不同溶剂选择如何影响 TIPS 并五苯/聚(3-己基噻吩)(P3HT)共混物中的垂直相分离和电荷传输。溶剂三氯苯导致 TIPS 并五苯和 P3HT 之间出现适度的垂直相分离,并产生优化的 TIPS 并五苯薄膜形貌和增强的 P3HT 有序性,从而产生的输出电流是