我,.................................[您的全名],在此声明,据我所知,此注册表中提供的所有信息均真实准确。我理解参加体育锻炼和健身活动具有固有风险,我自愿承担所有此类风险。我承认 ASAP / SHARP 及其工作人员对跑步期间可能发生的任何伤害或事故概不负责。
鉴于这些挑战,量子点彩色滤光片 (QDCF) 已被提出作为实现全彩微型 LED 显示器的替代方法 [2, 13, 17]。在该技术中,含量子点 (QD) 的材料(例如量子点光刻胶 (QDPR) 或量子点墨水)通过光刻或喷墨打印图案化为像素化阵列。然后,将该 QDCF 顶部玻璃以像素到像素的精度安装在全蓝色微型 LED 背板上。红色和绿色子像素中的红色 QD (R-QD) 和绿色 QD (G-QD) 会分别将蓝色微型 LED 发出的蓝光转换为红光和绿光,实现全彩显示。这样,只需要单色蓝色微型 LED 背板,这大大简化了传质过程,也减轻了温度引起的色移。在本文中,我们介绍了对 QDCF 微型 LED 技术的研究。我们使用光刻技术在 QDCF 顶部玻璃上图案化红色和绿色 QDPR。然后,将该顶部玻璃与蓝色微型 LED 背板精确粘合。测量所得器件的光学性能。此外,我们讨论了蓝光发射角度对 QDPR 厚度的适当选择以及优化精密粘合工艺以消除串扰的影响。结果,我们实现了具有良好显示性能的 1.11 英寸 228 ppi 全彩 QDCF 微型 LED 原型。讨论可能促进 QDCF 技术在微型 LED 显示器中的应用。
空军在许多基地保护这种鸟的筑巢地,特别是在美国东南部,如南卡罗来纳州、乔治亚州和佛罗里达州。他们这样做的方法之一是点燃小火,称为预定燃烧,清除森林中的枯叶和灌木丛。这可以防止树木长得太茂密而使鸟儿无法筑巢。
1 光学科学中心和先进材料表面工程 (SEAM) ARC 培训中心,斯威本科技大学理学院,霍索恩,维多利亚州 3122,澳大利亚 2 墨尔本纳米制造中心,151 Wellington Road,Clayton,维多利亚州 3168,澳大利亚 3 斯威本科技大学健康科学学院、心理科学系,霍索恩,维多利亚州 3122,澳大利亚 4 光子学与纳米技术研究所,维尔纽斯大学物理学院,Saul˙etekio al. 3,LT-10257 维尔纽斯,立陶宛 5 拉筹伯大学心理科学学院,墨尔本,VIC 3086,澳大利亚 6 WRH 计划国际研究前沿倡议 (IRFI),东京工业大学,长津田町,绿区,横滨 226-8503,神奈川,日本 * 通讯地址:weerasuriya@gmail.com (CW);soonhockng@swin.edu.au (SHN);sjuodkazis@swin.edu.au (SJ)
图4。sym-didikta和asym-didikta的光电表征:(a&b)在0.1 m [n bu 4 n] pf 6中分别在sym-didikta和sym-didikta和asym-didikta的环状和差分脉冲伏安图中,并在0.1 m [bu 4 n] pf 6中作为内部和fc/fc/fc/fc/fc/fc + 0.4 SCE)。45(c&d)吸收(黑线),稳态(SS)PL光谱在300 K(蓝线)和77 K处获得的甲苯中获得(红线;延迟:1 ns; gate时间:100 ns,l exc = 343 nm)和磷光(phos。;延迟:1 ms;栅极时间:8.5 ms,L exc = 343 nm)在甲苯玻璃的77 K(绿橄榄线)和sym-didikta和Asym-didikta的甲苯玻璃中。
摘要:为了减少沿海和国际航行船舶的污染,航运公司正在转向各种技术解决方案,这些解决方案大多基于电气化和使用碳足迹较低的替代燃料。传统柴油的替代品之一是使用氢气作为燃料或氢燃料电池作为动力源。它们在船舶上的应用仍处于实验阶段,仅限于小型船舶,这些船舶可作为评估不同技术解决方案适用性的平台。然而,在沿海和远洋船舶上大规模使用氢气作为主要能源还需要有生产和安全储存氢气的基础设施。本文概述了基于颜色的氢气分类,这是基于当前可用的生产技术描述氢气类型的主要方法之一,以及氢气储存的原理和安全方面。讨论了生产技术在海事领域应用的优缺点。还确定了成功使用氢气作为船舶燃料必须克服的问题和障碍。所提出的问题可用于确定航运业使用氢作为燃料的全球变暖潜力的长期指标,并根据特定地区的技术能力和资源选择合适的、具有成本效益且环境可持续的生产和储存方法。
基本法规................................................................................................................................22 美国 FCC 法规...................................................................................................................22 2.4 GHz 和 5 GHz 无线网络适配器的监管信息........................................................................22 激光声明................................................................................................................................23 加拿大......................................................................................................................................23 欧盟和欧洲经济区合规性......................................................................................................24 ENERGY STAR ......................................................................................................................25 欧亚经济共同体认证....................................................................................................................27 德国......................................................................................................................................27 土耳其 RoHS 法规................................................................................................................28 乌克兰 RoHS 合规性............................................................................................................28
由于微型 LED 芯片具有广视角特性,制造高色域色彩转换微型发光二极管 (LED) 显示器面临的主要挑战之一是相邻像素之间严重的串扰效应。本研究系统地模拟了导致串扰效应的潜在因素。我们观察到,用遮光矩阵 (LBM) 精确填充每个微型 LED 芯片之间的空间可以成为缓解这种风险的有效解决方案。经过仔细研究,证明了压模辅助成型技术是制造 LBM 的有效方法。然而,实验观察进一步表明,微型 LED 表面残留的黑色 LBM 会严重降低亮度,从而影响显示性能。通过采用等离子蚀刻技术有效提取被捕获的光,成功解决了这个问题。最终,开发了一种顶部发射蓝色微型 LED 背光,该背光采用黑色 LBM 精细成型,并与红色和绿色量子点色彩转换层相结合,实现全彩色显示。我们制造的显示器原型的色域可覆盖国家电视标准委员会的122%。
本通用注册文件包含与 Technicolor 的财务状况、经营和业务成果以及集团的某些计划和目标有关的某些前瞻性陈述。这些陈述基于管理层根据当前可用信息得出的当前预期和信念,并受多种因素和不确定因素的影响,这些因素和不确定因素可能导致实际结果与前瞻性陈述中描述的结果大不相同。除了根据上下文而具有前瞻性的陈述外,其他前瞻性陈述还可以通过使用“可能”、“将”、“应该”、“预期”、“计划”、“打算”、“预期”、“相信”、“估计”、“预计”、“预测”和“继续”等术语来识别,类似的表达方式也可用于识别前瞻性陈述。就其性质而言,前瞻性陈述涉及风险和不确定性,因为它们与事件有关并取决于预计未来会发生的情况。此类声明还受有关以下方面的假设影响:Technicolor 预期的业务战略;其推出新产品和服务的意图;其业务的预期趋势;以及 Technicolor 继续控制成本和保持质量的能力。
摘要:本文报告了通过无催化剂化学气相沉积 (CVD) 生长法合成 InSe 纳米带。当 InSe 纳米带的厚度从 562 nm 减小到 165 nm 时,峰值光响应发生了显著的蓝移。Silvaco Technology 计算机辅助设计 (TCAD) 模拟表明,这种光谱响应的变化应归因于 InSe 的波长相关吸收系数,其中较短波长的入射光将在表面附近被吸收,而较长波长的光将具有更大的穿透深度,导致较厚的纳米带器件的吸收边缘发生红移。基于上述理论,通过调控纳米带的厚度,实现了对蓝光(450 nm)、绿光(530 nm)、红光(660 nm)入射光敏感的三种光电探测器,可以实现紫色“H”图案的光谱重建,表明二维层状半导体在全色成像中的潜在应用。