(第 14 届 TWI 在线研讨会)基于电弧的增材制造(AM),也称为定向能量沉积(DED)电弧或线弧增材制造(WAAM),引起了核能、石油和天然气、航空航天、建筑和海洋等广泛行业的极大兴趣。其沉积速率较高,有望用于大型承重结构。 TWI 的技术专长结合了数十年的理论和实践知识、经验和能力,涉及一系列 AM 工艺和支持技术,例如冶金学、材料分析和无损评估。 TWI 拥有一套综合的 AM 研究计划,其中包括过程监控、建模和仿真、AM 设计、产品工程和数字系统集成。 该网络研讨会将介绍 TWI 对 DED arc AM 正在进行的一些研究,并讨论它如何为未来的数字化制造流程做出贡献。这将包括材料、工艺、监测和质量保证等部分,还将介绍能源和其他行业的研究实例。 ◆ 讲师:徐雷博士(电弧焊部门首席项目负责人)<提供翻译>
参考文献 [1]。世界卫生组织。公共卫生监测。世卫组织。2021 年。网址:https://www.who.int/health-topics/public-health-surveillance [2]。徐勇、李鑫、张平等。医疗保健中的大数据分析:从研究到实践。*J Med Syst*。2019;43(6):1-12。 [3]。Shaman J、Karspeck A。使用预测分析预测传染病的传播。*Annu Rev Public Health*。2020;33(1):41-57。 [4]。Kamel Boulos MN 等。公共卫生监测的移动健康工具:最新进展回顾。*J Biomed Inform*。2017;65:269-284。 [5]。Singh K 等。移动健康应用在全球健康中的应用:文献综述。*全球健康行动*。 2016;9(1):1-10。[6]。Kuo TT、Kim HE、Ohno-Machado L。区块链分布式账本技术在生物医学和医疗保健中的应用。*J Am Med Inform Assoc*。2017;24(6):1211-1220。[7]。Gostin LO、Hodge JG。在健康监测中平衡隐私与公共利益。*Science*。2000;290(5498):2303-2304。
萨潘·阿加瓦尔 Brad Aimone Hiro Akinaga 奥蒂托阿莱克 Akinola Mustafa Badaroglu Gennadi Bersuker Christian Binek Geoffrey Burr Leonid Butov Kerem Camsari Gert Cauwenberghs An Chen Winston Chern Supriyo Datta John Dallesasse Shamik Das Erik DeBenedictis Peter Dowben Tetsuo Endoh Ben Feinberg Thomas Ferreira de Lima Akira Fujiwara Elliot Fuller迈克尔·弗兰克·保罗·弗勒松 迈克尔·弗勒 藤村聪 迈克·加纳 查库·戈普兰·博格丹·戈沃雷努 猫·格雷夫斯 滨谷航平 羽正美 詹妮弗·哈斯勒 林义宏 平本敏郎 D·斯科特·霍姆斯 莎朗·胡 弗朗西斯卡·亚科比·岳 市原雅库 丹妮尔·伊尔梅尼 吉恩·安妮·因科维亚 恩金·伊佩克 泉目小二 神山聪 川端清志 阿西夫·可汗 敦宏木下一小林武人 Kozasa Suhas Kumar Ilya Krivorotov 秀岭 李湘 (Shaun) Li Shy-Jay Lin Tsu-Jae King Liu
小组成员: • Roger Beachy (NAS),华盛顿大学圣路易斯分校生物学名誉教授 • 康乐 (NAS/CAS),中国科学院北京生命科学研究院特聘教授 • 朱春武,中国科学院土壤研究所全球气候变化与粮食安全教授 • Heidi Gibson,史密森尼科学教育中心全球可持续发展系列经理 12:00 pm 问答和讨论 所有参与者 12:30 pm 午餐 1:30 pm 小组 II:食物系统、水和健康 主持人: • Judith Wasserheit (NAM),华盛顿大学 • 秦岳,北京大学 小组成员: • Daniel Raiten,美国国立卫生研究院营养研究办公室高级营养科学家 • Jessica Fanzo (NAS),哥伦比亚大学气候教授和人类粮食计划主任 • 闫晓媛,中国科学院土壤研究所教授 • 刘俊国,教授华北水利水电大学校长 下午 2:40 问答和讨论 所有参会者 下午 3:10 休息 下午 3:30 总结讨论:未来的需求和机遇 Karen Seto (NAS) 和 Yongguan Zhu (CAS) 与所有参会者 下午 4:00 休会 2024 年 11 月 22 日,星期五 上午 9:00 欢迎和前一天会议回顾 Karen Seto (NAS),耶鲁大学,美国 委员会主席 Yongguan Zhu (CAS),中国科学院,中国 委员会主席
(香港,2024 年 10 月 16 日)— 香港科技园公司欢迎《施政报告》中提出的各项促进香港持续创新的举措。这些举措包括扩大用于创新科技的土地分配、投入更多资源推动创新科技发展、积极寻找商业投资、吸引国际顶级人才、创造就业机会以及寻找新的增长领域,以促进香港经济多元化发展,加速香港转型为国际创新科技中心。香港科技园公司主席查毅超博士表示:“新一轮的《施政报告》为香港指明了方向,让我们既能拥抱变化,又能坚持创新驱动和高质量生产力的原则,为香港经济多元、高质量发展奠定了坚实的基础,我们深受鼓舞。特区政府迅速响应本地创科业蓬勃发展的趋势,大大提升了创新生态。香港科技园公司将积极支持这些工作,重点推进新型工业化,吸引创科企业和人才,为香港创科业发展提供全方位的助力。借助‘一国两制’的独特优势,背靠祖国、通达全球,这些举措将推动创科业迈上新台阶,巩固香港作为国际创科枢纽的地位。”
农用无人机集机器人、人工智能、大数据、物联网等技术于一体,被广泛应用于播种、地块监测、作物病虫害检测、农药化肥喷洒等各类农业作业,大大提高农业生产效率、解放劳动力(Kim et al.,2019),正在成为精准农业航空领域的一股生力军(Wang et al.,2019)。与传统农业机械相比,农用无人机具有体积小、重量轻、便于运输,飞行控制灵活等特点,具有作业精准、高效、环保、智能、使用方便等特点。但很多时候,飞行过程中农用无人机载荷的实时变化会影响其速度、精度和飞行轨迹稳定性。徐建军等(2019)指出,农用无人机在作业过程中应时刻保持良好的飞行姿态,提高作业效率。魏等提出了一种使用 PID 控制器和鲁棒 TS 模糊控制方法实现 AUAV 飞行轨迹稳定性的飞行动力学模型。对于不同的飞行条件,该模型可以在飞行路径中实现一定的稳定性,以抵抗负载扰动。
• 蔡志强,电能实业 • 谢志云,香港特别行政区政府环境局 • 马雅燕,香港浸会大学 • 戴维斯·博克,香港科技大学 • 陈德博,中国水资源研究所 • 周文忠,香港生产力促进局 • 罗范椒芬 • 伊莎贝尔·卡雷拉·扎马尼洛,斯坦福大学地球能源与环境科学学院 • Jim Taylor、Jeanne Ng、吕志和,中华电力香港有限公司 • 许志凯,新加坡国家发展部宜居城市中心 • Lisa Genasci,ADM 资本基金会 • 邝伟,陈家俊,香港中华煤气有限公司 • 方伟,顾宇,阳光电源股份有限公司 • 梁曦,中英(广东)CCUS 中心 • 杨晓亮,中国油气气候投资公司 • 徐远,香港中文大学 • 苏兆龙、刘慧、张文(实习生)、田中美(实习生)、Justine萧伟强 (实习生)
技术程序委员会: 张超 国防科技国家创新研究院 陈厚桐 美国洛斯阿拉莫斯国家实验室 范文辉 中国科学院西安光学精密机械研究所 韩家光 桂林电子科技大学 胡敏 电子科技大学 胡明烈 天津大学 金标斌 南京大学 Olga G. Kosareva 莫斯科国立大学 刘伟 南开大学 谷昌彦 日本福井大学 彭小雨 中国科学院重庆绿色智能技术研究院 Emma Pickwell-Macpherson 英国华威大学 石伟 西安理工大学 东之内昌义 日本大阪大学 王天武 中国科学院空天信息研究院 吴小军 北京航空航天大学 徐德刚 天津大学 张东文 国防科技大学 张岩 首都师范大学 张亚欣 电子科技大学 赵增秀 国防科技大学 郭立朱一明,中国工程物理研究院 朱一明,上海理工大学
残骸重建和一般紧固件装配过程。在一项关于航空工业点云配准的研究中,孙等[6,7]利用三维点云和测量技术开发了一套拼接飞机残骸的系统。结果表明,其粗配准精度为0.6毫米,可接受的配准精度为0.2毫米。王等[8]提出了一种用于飞机点云配准的通用密度不变框架。结果表明,与其他研究[9-11]相比,他们的方法具有更好的精度(0.6毫米——1.0毫米),以均方根误差(RMSE)评估。虽然精度有所提高,但所提出的方法适用于整个扫描飞机,而不是特定的部件。徐等[12]提出了一种紧固件装配的配准方法,其中利用局部几何特征和迭代最近点(ICP)算法。该配准方法用于扫描数据和 CAD 模型之间。结果表明,与单独使用 ICP 算法相比,所提出的方法具有更好的效率。但是,所提出的注册方法的不确定性并未披露。
功能性氧化石墨烯(GO)由于其面积大、毒性低、表面带有多种功能基团等特性,在生物医学研究领域引起了广泛关注,1,2因此,GO在药物输送方面具有良好的应用前景。3例如,徐建军研究组报道了一种基于氧化石墨烯(GO)和MnWO4的多功能诊疗纳米平台,GO作为载体,由于非共价作用,对抗癌药物盐酸阿霉素(DOX)有较高的负载量,且可在较低的pH值下触发药物释放。4蒋建军研究组通过将DNA适体与聚多巴胺氧化石墨烯纳米片相结合,制备了一种刺激响应性纳米平台,用于可控药物的输送和释放,GO纳米片作为阿霉素(DOX)的纳米载体。 5 Li 的研究小组设计并合成了肝素和聚乙烯亚胺 - 叶酸修饰的氧化石墨烯,以靶向具有高 DOX 负载能力的生物材料,从而增强细胞摄取。6 尽管许多药物输送
