摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常在齿轮和壳体之间以微米级间隙安装。在大多数这些应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常可取的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地减少同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究通过优化参数(切削速度、进给率、切削深度和切削刀具刀尖半径)尝试实现圆柱形加工零件的最小同轴度误差。计划进行实验,即中心复合设计矩阵和统计分析通过应用响应面法确定机器参数对高强度 Al 7075 合金同轴度误差的影响。进给率和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 以及 Rao(Rao-1、Rao-2 和 Rao-3)算法,使用推导出的经验方程来最小化同轴度误差。Rao 算法在计算量和解决方案精度方面均优于 Big-Bang 和 Big Crunch 算法。Rao 算法的结果经过实验验证,同轴度误差降低至 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
SSC 2010 财年项目建议:制定确定船体残余应力的通用设计指南 提交人:Sreekanta (Sree) Das,加拿大温莎大学。1.0 目标。1.1 船体是船舶的主要结构部件,通常由加强钢板制成。钢板通过焊接加强筋来加强。焊接过程会产生残余应力,这会导致裂纹萌生和裂纹扩展的潜在问题。已完成一些研究,以确定由带有一个或两个加强筋的钢板组成的船体部件中残余应力纵向分量的分布。然而,需要进行详细的研究以制定全面的设计指南,供船舶制造商、航运业和结构工程师用来确定残余应力所有三个法向分量的真实分布。因此,拟议项目旨在开展一项详细研究,以制定一般准则,帮助确定船体所有位置和三个方向的残余应力的所有三个分量。这项研究还将考虑焊接过程中的停止和启动以及加强筋的突然终止的影响。最先进的中子衍射 (ND) 方法将用于实验研究中残余应变的精确测量。非线性有限元 (FE) 建模将用于详细的参数研究。2.0 背景。2.1 船体结构由钢板制成,钢板由钢梁和大梁加固。结构部件(梁、大梁、板)通过焊接连接。焊接过程会在板材中产生大量热量输入,因此,当加固板冷却时会产生局部残余应力。船舶承受连续的循环载荷,因此疲劳失效和疲劳寿命是船舶结构的主要设计考虑因素之一。由于应力集中和残余应力的存在,大多数疲劳裂纹和随后的疲劳失效都始于两个结构部件之间的连接处。已经完成了大量研究工作,以确定考虑残余应力影响的船体结构疲劳寿命。在这些研究中,假设残余应力的纵向分量具有理想化且非常简单的分布,尽管人们知道残余应力分布取决于几个因素,包括 (i) 焊接过程中产生的热输入水平、(ii) 母钢板的厚度和 (iii) 加强筋的间距。最近完成的项目 SR-1456 考虑了热输入水平
第七届复合材料疲劳与断裂研讨会于 1997 年 5 月 7—8 日在密苏里州圣路易斯举行。此次研讨会由 ASTM 复合材料委员会 D-30 和 ASTM 疲劳与断裂委员会 E-8 主办。研讨会的主要目的是为复合材料疲劳与断裂新进展提供一个展示和讨论的平台。特别要求提交描述复合材料技术以下领域实验和分析研究的论文:失效机理、无损评估、环境影响、预测方法、测试方法开发和影响。五个分会场共计展示 21 篇论文。会议由 NASA 兰利研究中心的 AT Nettles 和 MK Cvitkovich、Alient Tech Systems 的 D. Cohen、美国陆军导弹司令部的 JE Patterson、阿拉巴马大学亨茨维尔分校的 MD Lansing、南伊利诺伊大学卡本代尔分校的 T. Chu 和 MERL 的 RH Martin 主持。在研讨会期间,TK O'Brien 被授予 Wayne Stinchcomb 纪念奖。根据研讨会期间的演讲评估结果,MK Cvitkovich 被授予研讨会最佳论文演讲奖。复合材料用于许多商业、军事和航空航天结构。这些应用大多涉及循环载荷、异物冲击或热机械载荷。优化这些结构的设计需要全面表征复合材料对各种载荷情景的响应。经济有效的表征涉及分离特定感兴趣现象的测试方法和可以将测试方法结果与实际结构行为相关联的模型的组合。本卷中的论文讨论了复合材料疲劳和断裂行为的许多重要方面。本卷中的论文分为疲劳和断裂、环境考虑、影响和展望部分。这些论文包括关于聚合物、金属和陶瓷基复合材料的论文。疲劳和断裂部分包含与微观结构效应、损伤、预测工具和测试方法开发有关的论文。环境考虑部分重点关注温度和其他环境因素对复合结构长期耐久性的影响。冲击部分论文讨论了冲击响应、损伤形成以及使用 NDE 技术作为预测工具。最后,展望部分提供了复合材料的艺术视角。
第七届复合材料疲劳与断裂研讨会于 1997 年 5 月 7-8 日在密苏里州圣路易斯举行。会议由 ASTM 复合材料委员会 D-30 和 ASTM 疲劳与断裂委员会 E-8 赞助。研讨会的主要目的是提供一个论坛,介绍和讨论复合材料疲劳和断裂的最新发展。特别要求提交描述复合材料技术以下领域的实验和分析研究的论文:失效机制、无损评估、环境影响、预测方法、测试方法开发和影响。五个会议共提交了 21 篇论文。会议由美国宇航局兰利研究中心的 A. T. Nettles 和 M. K. Cvitkovich、Alient Tech Systems 的 D. Cohen、美国陆军导弹司令部的 J. E. Patterson、阿拉巴马大学亨茨维尔分校的 M. D. Lansing、南伊利诺伊大学卡本代尔分校的 T. Chu 和 MERL 的 R. H. Martin 主持。在研讨会期间,T. K. O'Brien 被授予 Wayne Stinchcomb 纪念奖。根据研讨会期间的演讲评估结果,M. K. Cvitkovich 被授予研讨会最佳论文演讲奖。复合材料用于许多商业、军事和航空航天结构。这些应用大多涉及循环载荷、异物冲击或热机械载荷。优化这些结构的设计需要全面表征复合材料对各种负载场景的响应。具有成本效益的表征涉及分离特定感兴趣现象的测试方法和可以将测试方法结果与实际结构行为相关联的模型的组合。本卷中包含的论文涉及复合材料疲劳和断裂行为的许多重要方面。本卷中包含的论文分为疲劳和断裂、环境考虑、影响和展望部分。这些论文包括有关聚合物、金属和陶瓷基复合材料的论文。疲劳和断裂部分包括与微观结构效应、损伤、预测工具和测试方法开发有关的论文。环境考虑部分重点关注温度和其他环境因素对复合结构长期耐久性的影响。最后,“透视”部分提供了复合材料的艺术视角。在“影响”部分,论文讨论了影响响应、损伤形成以及使用 NDE 技术作为预测工具。
疲劳试验控制器的组件 Manjula B K EEE 部门 BMSIT&M 摘要:本文介绍了用于材料疲劳试验的伺服液压试验系统中计算机控制的单通道控制器的开发。使用称重传感器和 LVDT 获得的闭环控制,它向控制器提供与执行器的机械位置或其施加的负载成比例的电信号。电信号通过信号调节电路进行放大,该信号被馈送到伺服控制器以生成误差信号。使用差分放大器将反馈模式(无论是行程(LVDT)还是负载模式)与相应的设定点进行比较。数字模拟转换器的附加板用于将数字形式的设定点转换为模拟值。控制器的操作显示在计算机的控制台上。关键词:疲劳试验、控制器 DAC、ADC、负载模式和行程模式 1.简介 疲劳试验是确定飞机寿命的关键要求。疲劳试验有助于确定材料承受周期性疲劳载荷条件的能力。根据设计,选择的材料应满足或超过疲劳试验应用中预期的服务负载。循环疲劳试验会产生拉伸、压缩、弯曲、扭转或这些应力组合的反复加载和卸载。疲劳试验通常以拉伸 - 拉伸、压缩 - 压缩和拉伸压缩和反向加载。要进行疲劳试验,将样品装入疲劳试验机或疲劳试验机中,并使用预定的测试应力加载,然后卸载至零负载或相反负载[1]。然后重复此加载和卸载循环,直到测试结束。根据测试参数,测试可以运行预定的循环次数,也可以运行到样品失效[2]。疲劳测试的目的通常是确定材料在循环载荷下的预期寿命,但疲劳强度和抗裂性也是常见的要求值。材料的疲劳寿命是材料在单一载荷方案下可以承受的总循环次数。疲劳测试还用于确定样品在指定循环次数内可以承受的最大载荷。这些材料的疲劳极限比其他材料高,因为在任何材料受到波动力而非恒定力的行业中,所有这些特性都极为重要。疲劳试验类型:疲劳试验有几种常见类型,以及两种常见形式:负载控制高周疲劳和应变控制低周疲劳。高周试验往往与弹性状态下的负载有关,而低周疲劳试验通常涉及塑性变形。疲劳试验的材料类型 大多数材料在其使用寿命期间可能会以某种方式经历疲劳。然而,在疲劳是一个因素的应用中,通常会发现由金属或复合材料制成的部件。
聚苯乙烯酮(PEEK)是一种具有高机械性能,出色的耐热性,耐化学性和低热稳定性和可传播性(良好绝缘)的材料。所有这些特性都使许多领域中使用的材料,例如航空航天工程,电子,汽车工程,化学工业,医疗设备。除了用作纯树脂外,还可以用各种增强材料(例如玻璃纤维,碳纤维,石墨等)加固。较高的制造成本意味着该材料主要用于需要高性能的应用。由用碳纤维加固的树脂基质制成的复合材料是本研究的主题。由于该行业的众多应用和需求,聚醚酮是一种良好的材料,并且许多作品呈现出有关此材料的结果。两次评论试图涵盖与该材料相关的多种方面,用作生产碳纤维增强复合材料的树脂[1,2]。在使用PEEK矩阵和纤维增强复合材料时产生的艺术状态和问题可以在许多评论中找到(即[2-7])。[8]中显示了PEEK基质和碳纤维增强材料的基本特性。在[9]中获得了带有短纤维和杂化碳纤维的PEEK复合材料的行为的结果。测试是在不同温度下从室温开始,然后在[-50°C的范围内进行的; +85°C]研究温度依赖性。它的使用允许该领域的重大发展。在许多实际应用中,温度的效果变得很重要,有许多方法可以依赖纤维增强复合材料的温度依赖性。为了研究这种依赖性,在[10]中提出了构型定律,该定律使用ramberg-osgood的关系,为进行研究的温度范围提供了令人满意的估计。实验室检查在-45°C和75°C之间的温度范围内验证所提出的模型。本文中提出的模型具有较小数量的参数,并提供比现有模型更高的精度,并在本文中进行了比较。在[11]中介绍了通过增材制造过程获得的结构组件分析模型的研究。在[12]中研究了单向窥视和连续的碳纤维增强热塑性材料。在循环载荷的情况下,将寿命与在静态测试中获得的寿命进行比较,在这两种情况下,应力水平都是相同的。在专业文献[13]中充分记录了PEEK/碳型复合材料的粘弹性行为,并提到了根据时间和温度参数确定这些复合材料的行为的方法。Schapery [14]提出的用于研究粘弹性行为的模型的特征是研究人员广泛接受。在[15]中改善了该模型,以考虑到研究人员随着时间的推移观察到的Schapery模型的不一致。结果表明范围最近的一篇论文[16]的作者表明,Schapery的非线性粘弹性表征的方法可以有效地建模测试。
摘要 电子组件使用各种具有不同机械和热性能的聚合物材料来在恶劣的使用环境中提供保护。然而,机械性能的变化(例如热膨胀系数和弹性模量)会影响材料的选择过程,从而对电子产品的可靠性产生长期影响。通常,主要的可靠性问题是焊点疲劳,这是电子元件中大量故障的原因。因此,在预测可靠性时,有必要了解聚合物封装(涂层、灌封和底部填充)对焊点的影响。研究表明,当焊料中存在拉伸应力时,由于聚合物封装的热膨胀,疲劳寿命会大大缩短。拉伸应力的加入使焊点处于周期性多轴应力状态,这比传统的周期性剪切载荷更具破坏性。为了了解拉伸应力分量对微电子焊点疲劳寿命缩短的影响,有必要将其分离出来。因此,我们构建了一个独特的样本,以使无铅焊点经受波动的拉伸应力条件。本文介绍了热机械拉伸疲劳样本的构造和验证。热循环范围与灌封膨胀特性相匹配,以改变施加在焊点上的拉伸应力的大小。焊点几何形状的设计具有与 BGA 和 QFN 焊点相关的比例因子,同时保持简化的应力状态。进行了 FEA 建模,以观察焊点在热膨胀过程中的应力-应变行为,以适应各种灌封材料的特性。焊点中轴向应力的大小取决于热膨胀系数和模量以及热循环的峰值温度。样本热循环的结果有助于将由于灌封材料的热膨胀而导致焊点经历的拉伸应力的大小与各种膨胀特性相关联,并为封装电子封装中焊点的低周疲劳寿命提供了新的见解。简介大量电子元件故障归因于焊点疲劳故障。航空航天、汽车、工业和消费应用中的许多电子元件都在波动的温度下运行,这使焊点受到热机械疲劳 (TMF) 的影响。电子组件中的焊料疲劳是温度波动和元件与印刷电路板 (PBC) 之间热膨胀系数 (CTE) 不匹配的结果。在温度变化过程中,PCB 和元器件 CTE 的差异会引起材料膨胀差异,从而使焊点承受剪切载荷。为了减少芯片级封装 (CSP) 中焊点所承受的剪切应变,人们使用了各种底部填充材料来限制焊点的变形。芯片级焊料互连(例如倒装芯片封装中的焊料)尤其受益于底部填充材料,因为它可以重新分配热膨胀应力,从而限制施加在焊料凸点上的应变。除了限制剪切应变之外,底部填充材料的膨胀还会导致球栅阵列 (BGA) 焊点产生较大的法向应变。Kwak 等人使用光学显微镜的 2D DIC 技术测量了热循环下焊点的应变 [1]。他们发现,CTE 为 30 ppm/ºC 且玻璃化转变温度 (T g ) 为 80ºC 的底部填充材料在 100ºC 的温度下可以产生 6000 µƐ 的平均法向应变。这些高法向应变并不像 BGA 封装中的剪切应变那样表现出与中性点距离相同的依赖性。法向应变的大小与 CTE、弹性模量 (E)、封装尺寸和温度有着复杂的依赖关系。法向应变的增加使焊点受到剪切应变和轴向应变的组合影响,这反过来又使焊点在温度波动的条件下受到非比例循环载荷。