摘要:该论文通过“量子信息”的概念解释了“可分离的复合物希尔伯特空间中的操作员”(在“经典”量子力学中定义为“数量”)的概念。就波函数而言,对于要测量的一定数量的所有可能值的概率(密度)分布的特征函数,量子力学中数量的定义是指概率(密度)分布的任何单一变化。可以将其表示为“统一” Qubits的特定情况。任何量子位的相反解释是指某个物理数量,这意味着它的概括性既不是统一的,也不是保存能量。他们的身体意义,宽松地说,包括交换时间时刻,因此在时空“屏幕”中实现。“暗物质”和“暗能量”可以通过“数量”的相同概括为非热门操作员的相同概括,其次仅在伪里曼尼亚人的时空“屏幕”上,根据爱因斯坦的“马赫的原理”和他的野外方程式。关键词:质量,数量,量子信息,Qubit Hilbert空间,时空
摘要:与基于可分离的复杂希尔伯特空间的“经典”量子力学相比,该论文研究了量子信息后量子不可分性的理解。相应地“可区分性 /无法区分性”和“古典 /量子”的两个反对意义在量子不可区分性的概念中隐含可用,可以解释为两个经典信息的两个“缺失”位,这些信息将在量子信息传递后添加,以恢复初始状态。对量子不可区分性的新理解与古典(Maxwell-Boltzmann)与量子(Fermi-Dirac或Bose-Einstein)统计的区别有关。后者可以推广到波函数类(“空”量子量),并在希尔伯特算术中详尽地表示,因此可以与数学基础相连,更确切地与命题逻辑和设置理论的相互关系相互关联,共享了布尔代数和两种抗发码的结构。关键词:Bose-Einstein统计,Fermi-Dirac统计,Hilbert Arithmetic,Maxwell-Boltzmann统计,Qubit Hilbert Space,量子不可区分性,量子信息保存,Teleportation
关注点,包括但不限于折衷的同行评审过程,不适当或无关紧要的参考文献,其中包含非标准短语或不在期刊范围内。根据调查的发现,出版商与主持人协商,因此不再对本文的结果和结论充满信心。
甲状腺是位于颈部底部、喉结下方的蝴蝶形腺体。甲状腺会产生控制血压、体温、心率和体重的激素。甲状腺细胞开始增殖,最终发展为甲状腺癌。最初,甲状腺癌可能没有任何症状。但是,当它变大时,可能会产生颈部肿胀、声音变化和吞咽困难等症状和指标。当甲状腺细胞发生 DNA 变异时,就会导致甲状腺癌。细胞的 DNA 包含指示其做什么的指令。科学家称之为突变的变异指示细胞增殖和快速扩张。当健康细胞自然死亡时,这些细胞继续存在。肿瘤是由正在积累的细胞形成的肿块。肿瘤有可能发展、浸润周围组织并传播(转移)到颈部淋巴结。有时,癌细胞能够传播到身体的其他部位,包括肺、骨骼和颈部。通过将甲状腺模型放置在天线下方,使用所提出的 MPA 来检测肿瘤 [1]。
如今,微带天线在许多航空航天应用中都受到青睐,例如高性能车辆、飞机、军用飞机、无人驾驶飞行器 (UAV)、航天器、雷达系统、卫星和导弹应用。本研究调查了微带贴片天线在航空航天工业尤其是全球定位系统 (GPS) 中的应用,并在 GPS L5 安全频段实现了微带贴片天线的样本设计。利用高频结构模拟器 (HFSS) 模拟了设计的高增益圆极化天线,并分析了结果。模拟的数值分析表明,在中心频率 1176 MHz 处,S11 值为 - 38.85 dB,带宽为 54 MHz,增益为 6.07 dBm。根据这些值,得出结论,它可以在全球定位 L5 安全频段中使用。
摘要本文为能源工程主题,尤其是能源收集领域做出了重要贡献。无线功率传输(WPT)是最近在该领域使用的最广泛使用的方法之一,可以为Rectenna Systems等环境以干净的方式发电。Rectenna系统的主要组成部分是微带贴片天线(MPA)。这是本文提出一个新的概念1×4圆形极化MPA阵列的新颖概念,以在2.45 GHz的谐振频率(射频频率能量收集(RFEH)系统)的谐振频率下运行。基本MPA元件是使用中心插槽的正方形天线,在四个角处与缺陷的地面结构(DGS)方法相结合。为了提高天线的性能,以与Rectenna系统的整合电路集成,这是RFEH中最常用的系统。通过CST MWS软件和HFSS求解器获得的仿真结果表明,本文中的这种新颖设计在反射系数,电压站立波比,轴向比率,轴向比率,方向性和增益为2.45 [GHz]方面具有良好的性能。此开发的MPA适用于各种RFEH应用。
沿 Y 轴的孔宽度为 0.5 毫米,沿 x 轴的孔长度为 20 毫米。每个 I 形孔都蚀刻在传输线贴片平面下方。经过参数研究,计算出了设计的最佳尺寸。此外,传输线在几个馈电网络中通常不是直线,但在几个馈电网络中是直线。它们被认为在某种程度上折叠起来。当水平传输线折叠成 90 度垂直传输线时,输入的大部分功率会在不连续处反射回源,从而降低系统的性能,因为它会导致线路电容发生变化,从而影响线路的阻抗。天线设计中采用了斜接弯曲方法来减少传输线损耗。斜接弯曲的目的是去除少量电容,将线路的阻抗恢复到匹配阻抗。图 4 描绘了用于解决这些问题的微带斜接弯曲的结构。截断通道的尺寸(x)可以通过方形弯头的对角线D来计算。弯头的尺寸可以借助以下方程式[4-6]来计算。
1. 引言由于高速微处理器和快速切换技术的进步,超宽带 (UWB) 已成为经济可行的短距离、高性价比通信技术。雷达系统、无线个人局域网、定位、消费电子产品和医疗电子产品只是早期的一些应用。从那时起,人们已经对 UWB 电磁学、组件和系统工程有了完整的了解。美国联邦通信委员会 (FCC) 是 2002 年发布 UWB 指导意见的主要组织,授权在 3.1–10.6 GHz 范围内未经许可使用分配的频谱。尽管如此,允许的功率水平设置得非常低,以避免与在此频率范围内运行的其他技术(如 Wi-Fi 和蓝牙 [1])发生干扰。图 1 描绘了通常的无线电传输功率谱密度与
如图 4b 所示,所提出的结构可以在 3.58 GHz 和 4.75 GHz 处创建两个传输零点。这些传输零点可以在 WPD 设计中抑制更多谐波。所提出的谐振器主要尺寸如下:d4 = 2.4、d5 = 1.4、d6 = 0.5、d7 = 1.2、d8 = 0.9、d9 = 0.1、d10 = 2.8、d11 = 0.11、W3 = 0.1、W5 = 2.1、W6 = 0.1、W7 = 0.1、W8 = 2.6、S3 = 0.1、S4 = 0.3、S5 = 0.2、S6 = 0.2、S7 = 0.2(单位均为毫米)。表 2 列出了所提出的主谐振器的 LC 等效模型的计算值。在 (13) 中计算了设计的主谐振器的 TF。
摘要:从目前发展现状来看,无芯片射频识别(RFID)传感器在结构健康监测中的应用存在检测难、效果差、设计功能单一等缺点,限制了该技术的进一步发展。因此,提出一种新型RFID应变传感器,实现小型化无芯片RFID编码标签结构紧凑、功能分离。集成圆盘单极子天线使无线测量成为可能。通过单参数应变仿真分析,确定了6个线性度较好的特征参数。采用时间序列数据增强算法和背景噪声数据增强算法对训练集进行扩充。然后利用BP神经网络进行数据融合,训练误差最终收敛到0.0005。设计了有线与无线对比实验,并通过有线实验对无线实验进行优化。无线测量实验结果表明,结合多参数信息融合技术,所提出的传感器与实际应变的平均误差为6.04%,最小误差为0.25%,应变传感器多参数融合监测方法修正了单参数测量的误差,提高了其准确性和鲁棒性。