在本研究中,我们首先收集并概括了几个现有的非微扰模型,用于描述任意弯曲时空中单个两级量子比特探测器与相对论量子标量场之间的相互作用,其中时间演化由简单生成的幺正体给出,即由施密特秩 1 相互作用哈密顿量生成的幺正体。然后,我们扩展了与这些非微扰模型相关的相对论量子通道,以包括量子场的非常大的一类高斯态,其中包括场上的相干和压缩操作(即高斯操作)的任意组合。我们表明,所有涉及非真空高斯态的物理结果都可以用与真空态相互作用的形式重新表述,但高斯算子通过伴随通道应用于场算子,从而有效地给出了时空中因果传播子形式的高斯运算的“傅里叶变换”解释。此外,我们表明,在这些非微扰模型中,可以精确计算 Rényi 熵,因此,通过复制技巧,可以计算与探测器相互作用后场态的冯·诺依曼熵,而无需对探测器和场的联合初始状态的纯度做出任何假设。这为我们提供了场的三参数“广义猫态”系列,其熵是有限的,并且精确可计算。
回想一下位移算符如何变换光子振幅算符,ˆ D ( α )ˆ a † ˆ D † = ˆ a † − α ∗ ,状态可以写成位移和创造的连续
量子模拟的复杂性并非仅仅源于纠缠。量子态复杂性的关键方面与非稳定器或魔法有关 [1]。Gottesman-Knill 定理 [2] 表明,即使是一些高度纠缠的状态也可以被有效地模拟。因此,魔法是一种资源,代表准备量子态所需的非 Clifford 操作(例如 T 门)的数量。我们使用稳定器 R´enyi 熵 [3] 证明,与具有零动量的状态相比,具有非零晶格动量的退化量子多体基态允许魔法的增量 [4]。我们通过分析量化了这一增量,并展示了有限动量不仅增加了长程纠缠 [5],还导致魔法的变化。此外,我们还提供了 W 状态及其广义(量子信息界经常讨论)与受挫自旋链基态之间的联系。
量子隐形传态的理想实现依赖于获得最大纠缠态;然而,在实践中,这种理想状态通常是无法获得的,人们只能实现近似隐形传态。考虑到这一点,我们提出了一种量化使用任意资源状态时近似隐形传态性能的方法。更具体地说,在将近似隐形传态任务定义为对单向局部操作和经典通信 (LOCC) 信道上的模拟误差的优化之后,我们通过对更大的两 PPT 可扩展信道集进行优化来建立此优化任务的半确定松弛。我们论文中的主要分析计算包括利用身份信道的酉协方差对称性来显著降低后者优化的计算成本。接下来,通过利用近似隐形传态和量子误差校正之间的已知联系,我们还应用这些概念来建立给定量子信道上近似量子误差校正性能的界限。最后,我们评估各种资源状态和渠道示例的界限。
本文感兴趣的特定量子态是两个相位相反的相干态的叠加,通常称为(薛定谔)猫态。猫态可用作量子计算机中的逻辑量子比特基础 [2, 3]。它们还可以用作干涉仪的输入态,干涉仪能够以比光波长通常施加的限制更高的精度测量距离 [4]。仅通过幺正演化将单个相干态转换为猫态需要很强的非线性。此外,猫态对光子吸收的退相干极为敏感。出于这些原因,平均包含多个光子的猫态仅在腔量子电动力学实验中产生,在该实验中,原子与限制在高精度光学腔内的电磁场相互作用 [5, 6]。在这种实验中,腔将光学模式限制在一个很小的体积内,因此
人们从物质分类的角度发现了许多全新的拓扑电子材料,包括拓扑绝缘体[5–8]和拓扑半金属[9]。与此同时,量子力学波与经典波的类比启发人们将凝聚态物理学中的许多概念推广到经典波系统,如电磁波、声波和机械波系统。直观地,人们可以将经典波的控制方程(例如电磁波的麦克斯韦方程)转化为哈密顿量。按照这种方法,最初为量子力学波提出的拓扑相最近已在各种经典波系统中实现,[10–17],从而实现了拓扑激光器[18–21]、鲁棒光延迟线[22]和高质量片上通信等许多实际应用。 [23,24] 最近的进展进一步将拓扑态从厄米波系统扩展到非厄米波系统,
Aurubis开发的过程集中在锂优先的浸出上,从而将大多数锂作为硫酸盐溶液回收,可以纯化或转化为碳酸锂等中间体。随后,靶向镍和钴的浸出过程相对简单,随后清除杂质。从这种浸出溶液中,钴,锰和镍分离并作为可销售中间体回收。富含石墨的浸出残留物已用于浮选流量表开发,该浓缩物最近已经提出了锁定循环测试的碳等级> 92%的碳等级。