胰腺 β 细胞通过产生和分泌胰岛素在葡萄糖稳态中发挥关键作用。胰岛素释放受损会导致慢性高血糖症,并导致 2 型糖尿病 (T2D) 的发展。胰岛素储存在分泌颗粒中,当血糖水平升高时,分泌颗粒被运输到质膜上,然后胞吐到循环系统中。将葡萄糖代谢与胰岛素分泌联系起来的机制很复杂,涉及 Ca 2+ 和磷脂信号传导。膜接触位点 (MCS) 是细胞器膜紧密相邻的特殊区域,为两个区域之间的非囊泡脂质交换和 Ca 2+ 运输提供了管道,但它们对正常 β 细胞功能的重要性尚不清楚。在这里,我们发现了一种涉及 ER 和胰岛素颗粒的新型 MCS,它们促进了两个细胞器之间的脂质交换。氧固醇结合蛋白 (OSBP) 是一种胞浆脂质转运蛋白 (LTP),它以 Ca 2+ 和 pH 依赖的方式被募集到这些 MCS 中,并催化颗粒状 PI(4)P 与 ER 胆固醇的交换。这种机制对于正常的胰岛素分泌至关重要。跨膜蛋白 24 (TMEM24) 是一种 ER 锚定的 LTP,它与质膜 (PM) 动态相互作用并为其提供磷脂酰肌醇(其他磷酸肌醇的前体)。我们发现 TMEM24 定位在空间和时间上受 Ca 2+ 和二酰甘油 (DAG) 调节,并且从 PM 分离后,它稳定在 ER-线粒体 MCS 上。TMEM24 的缺失导致 ER 和线粒体 Ca 2+ 失调、ATP 产生受损以及胰岛素分泌减少。高分辨率成像进一步显示,TMEM24 还位于靠近线粒体的一组新合成的胰岛素颗粒附近。这些细胞器接触还由线粒体上的电压依赖性阴离子通道 (VDAC) 和 Mitofusin-2 以及胰岛素颗粒上的囊泡核苷酸转运体 (VNUT) 的存在定义。VNUT 表达减少会消除线粒体和胰岛素颗粒之间的相互作用,并导致胰岛素颗粒的生物合成和胞吐受损。总之,我们的研究结果强调了不同 MCS 在维持正常 β 细胞功能方面的重要作用。
作者:JA Faralli · 2022 年 · 被引用 12 次 — 这会产生串扰,使 TM/SC 细胞能够对 ECM 中的变化作出反应,这种变化可能是由 TM/SC 上的机械力、衰老和疾病引起的。
抽象背景腹膜转移是胃癌最常见的转移模式。胃癌腹膜转移(GCPM)的预后较差,对常规治疗的反应较差。最近,免疫检查点封锁(ICB)在治疗GCPM方面表现出了良好的功效。最佳响应者的分层和ICB疗法的抵抗机制的阐明非常重要,并且仍然是主要的临床挑战。设计我们进行了II期试验,涉及用ICB(Sintilimab)与化学疗法结合的GCPM患者。收集了来自患者的原发性肿瘤,GCPM和外周血的样品进行单细胞测序,以全面解释GCPM的肿瘤微环境及其对免疫疗法疗效的影响。结果GCPM生态系统协调与原发性GC不同的独特免疫抑制模式,该模式由基质 - 乳糖叶菌组成,由SPP1+肿瘤相关的巨噬细胞(TAMS)和血栓形成蛋白2(THBS2)+Matrix Cancer-Cancer-Cancer-Isspatied Fibrobrobrobloblasts(McAfts)组成。因此,该基质乳突串扰是GCPM患者ICB耐药性的主要介体。从机理上讲,累积的THB2+MCAF促进了腹膜特异性组织居民巨噬细胞的募集,并通过补体C3及其受体C3A受体1(C3AR1)转化为SPP1+TAM,从而形成了原生质层状质基质丝状丝状niche。阻塞C3-C3AR1轴均破坏了基质乳突串扰,从而显着提高了ICB在体内模型中的益处。结论我们的发现提供了与GCPM患者ICB耐药性相关的细胞组成的新分子肖像,并有助于优先考虑治疗候选者以增强免疫疗法。
摘要 加扰是一个由黑洞中的信息丢失问题引入的概念。本文我们从纯量子信息论的角度讨论了加扰的影响,而不考虑信息丢失问题。我们引入了用于量子隐形传态的7量子电路。结果表明,如果使用最大加扰幺正,隐形传态可以是完美的。由此我们推测“加扰的数量与隐形传态的保真度成正比”。为了证实这一猜想,我们引入了θ相关的部分加扰幺正,当θ = 0和θ = π/ 2时,它分别退化为无加扰和最大加扰。然后,我们利用qiskit(版本0.36.2)和7量子比特真实量子计算机ibm_oslo,以分析和数值方式计算平均保真度。最后,我们表明我们的猜想可能是正确的,也可能是错误的,这取决于贝尔测量的量子比特的选择。
量子信息的离域化或扰乱已成为理解孤立量子多体系统中热化的核心要素。最近,通过将不可积系统建模为周期驱动系统,缺乏汉密尔顿图像,而真实的汉密尔顿动力学由于计算限制通常仅限于小系统规模,在分析上取得了重大进展。在本文中,我们从信息论的角度研究守恒定律(包括能量守恒定律)在热化过程中的作用来解决这个问题。对于一般的不可积模型,我们使用平衡近似来表明,即使系统节省能量,最大量的信息在后期也会被扰乱(以时间演化算子的三部分互信息来衡量)。相反,我们阐明了当系统具有导致光谱退化的额外对称性时,扰乱的信息量必须减少。这一普遍理论在全息共形场论 (CFT) 和 Sachdev-Ye-Kitaev (SYK) 模型的案例研究中得到了体现。由于 1 + 1D CFT 中具有较大的 Virasoro 对称性,我们认为,在某种意义上,这些全息理论并不是最大程度混沌的,这可以通过第二个 Rényi 三分互信息的不饱和明确看出。在 SYK 模型中,粒子空穴和 U ( 1 ) 对称性的作用较弱,因为简并只有两重,我们在大 N 和小 N 时都明确证实了这一点。我们根据局部算子的增长重新解释了算子纠缠,将我们的结果与非时间序相关器所描述的信息扰乱联系起来,从海森堡的角度确定了抑制扰乱的机制。
我们开发并应用了随机编译(RC)方案的扩展,该协议包括对相邻Qubits的特殊处理,并大大降低了由于在IBMQ量子计算机(IBM_LAGOS和IBMQ_EHNINGEN)中使用错误门的超导QUBIT上的误解而引起的串扰效应。串扰错误,源于受控的(CNOT)两分门,是众多量子计算平台上的错误源。对于IBMQ机器,它们对给定量子计算的性能的影响通常被忽略。我们的RC协议由于串扰而变成一致的噪声变成一个去极化噪声通道,然后可以使用已建立的缓解误差方案(例如噪声估计电路)对其进行处理。我们将方法应用于Bardeen-Cooper-Schrieffer(BCS)Hamiltonian的非平衡动力学的量子模拟,以进行超导性,这是一个特别具有挑战性的模型,用于模拟量子硬件,因为Cooper Pairs的长距离相互作用。在135个cnot门的情况下,我们在一个与Trotterization或Qubit Decermence相反的串扰方面工作,主导了误差。我们对相邻量子位的旋转显示可显着改善噪声估计协议,而无需添加新的Qubits或电路,并允许对BCS模型进行定量模拟。
植物暴露于非常不同的攻击者,包括微生物病原体和草食昆虫。为了保护自己,植物已经发展了防御策略,以抵消潜在的入侵者。植物防御信号研究的最新进展表明,根据遇到的入侵者的类型,植物能够差异激活诱导,广谱防御机制。植物激素水杨酸(SA),茉莉酸(JA)和乙烯(ET)是防御信号通路网络中的主要参与者。在SA-,JA-和ET依赖性信号通路之间的串扰被认为与对防御反应进行微调有关,最终导致了防御反应的最佳组合以抵抗入侵者。这些信号化合物的生物合成途径的基因工程以及模仿其作用方式的保护化学物质的开发为开发新策略的作物保护提供了有用的工具。但是,有证据表明,对微生物病原体的抗药性与对草食昆虫的抗药性之间的抗性:一旦植物的条件表达对微生物病原体的抗性,它可能会更容易受到食草动物的攻击,而反之亦然。然而,病原体和抗昆虫抗性之间的贸易证据是矛盾的。本综述集中于有关SA-,JA-和ET依赖性诱导对微生物病原体和草食性昆虫的抗性的最新实验证据。此外,我们将解决以下问题,无论是通过基因工程或通过使用防御信号的植物保护剂来操纵国防信号通路,是否会增强植物对潜在入侵者的免疫力,还是将成为作物保护策略的负担。
免疫系统识别病原体和抗原水平的入侵微生物。Toll样受体(TLR)在针对病原体的第一线防御中起关键作用。TLR的主要功能包括细胞因子和趋化因子的产生。TLR与其他受体共享常见的下游信号通路。围绕TLR旋转的串扰相当复杂而复杂,强调了免疫系统的复杂性。通过TLRS产生的细胞因子和趋化因子的蛋白鱼可能会受其他受体的影响。整合素是在许多不同细胞上表达的关键异二聚体粘附分子。有一些研究描述了TLR和整联蛋白之间的协同或抑制性相互作用。因此,我们回顾了TLR和整合素之间的串扰。了解串扰的性质可以使我们能够通过整合素来调节TLR功能。
量子扰乱描述了信息在量子系统中扩散到许多自由度的过程,这样信息就不再是本地可访问的,而是分布在整个系统中。这个想法可以解释量子系统如何变成经典系统并获得有限的温度,或者在黑洞中,物质落入的信息是如何被抹去的。我们探测了相空间中双稳态点附近的多粒子系统的指数扰乱,并将其用于纠缠增强计量。时间反转协议用于观察计量增益和不按时间顺序的相关器同时呈指数增长,从而通过实验验证了量子计量和量子信息扰乱之间的关系。我们的结果表明,能够以指数速度快速产生纠缠的快速扰乱动力学对实际计量很有用,可产生超出标准量子极限 6.8(4) 分贝的增益。E
摘要表皮生长因子受体 (EGFR) 中的体细胞激活突变是癌症(例如非小细胞肺癌 (NSCLC)、转移性结直肠癌、胶质母细胞瘤、头颈癌、胰腺癌和乳腺癌)中最常见的致癌驱动因素之一。针对 EGFR 信号通路的分子靶向药物已显示出强大的临床疗效,但患者不可避免地会出现获得性耐药。尽管针对 PD-1/PD-L1 的免疫检查点抑制剂 (ICI) 在多种癌症类型的部分患者中表现出持久的抗肿瘤反应,但它们对含有 EGFR 激活基因变异的癌症的疗效有限。越来越多的研究表明,新的 B7/CD28 家族成员(如 B7-H3、B7x 和 HHLA2)的上调与 EGFR 信号传导有关,并可能通过创建免疫抑制肿瘤微环境 (TME) 导致对 EGFR 靶向疗法的耐药性。在本综述中,我们讨论了 EGFR 信号传导对 PD-1/PD-L1 通路和新的 B7/CD28 家族成员通路的调节作用。了解这些相互作用可能有助于制定联合治疗策略,并可能克服当前对 EGFR 靶向疗法的耐药性挑战。我们还总结了抗 PD-1/PD-L1 疗法在 EGFR 突变癌症中的临床数据,以及
