。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月15日。; https://doi.org/10.1101/2023.07.14.549076 doi:biorxiv Preprint
完整作者列表: Nasiruddin, Md;东北大学,化学 Waizumi, Hiroki;东北大学,化学系 Takaoka, Tsuyoshi;东北大学,先进材料多学科研究中心 Wang, Zhipeng;东北大学,化学 Sainoo, Yasuyuki;东北大学 - Katahira 校区,先进材料多学科研究中心 Mamun, Muhammad Shamim Al;库尔纳大学,化学 Ando, Atsushi;国家先进工业科学技术研究所,纳米电子研究所 FUKUYAMA, MAO;东北大学,先进材料多学科研究中心;Hibara, Akihide;东北大学,先进材料多学科研究中心 Komeda, Tadahiro;东北大学,先进材料多学科研究中心
Krabbe病(KD)是由GALC基因突变引起的溶酶体储存疾病(LSD)。有50多种单遗传LSD,在很大程度上阻碍了儿童的正常发育,并且经常导致过早死亡。目前尚无LSD的治疗方法,可用的治疗通常不足,表演短,并且并非没有合并症或长期副作用。过去30年中,我们对LSD病理学以及治疗方案的理解取得了重大进步。最近根据这些进展开始了两项基于基因治疗的临床试验,NCT04693598和NCT04771416。本评论将讨论我们对KD的了解如何到达今天的位置,重点关注临床研究,以及发现的内容如何证明对其他LSD的治疗有益。
摘要:心脏内神经探针既是大脑功能基本神经科学研究的强大工具,也是旨在恢复瘫痪患者功能的大脑计算机界面(BCIS)的关键组成部分。心脏内神经探针既可用于在单个单位分辨率下检测神经活动,又可以刺激具有高分辨率的少量神经元种群。不幸的是,由于神经素的流动反应在植入和持续存在于皮质中的神经蛋白敏捷反应,因此在慢性时点上倾向于在慢性时点上失败。正在开发许多有前途的方法来规避炎症反应,包括开发较少的弹药材料/装置设计以及抗氧化剂或抗渗透性疗法的递送。在这里,我们报告了我们最近的努力,以整合动态软化的聚合物底物的神经保护作用,旨在通过在探针中掺入微型流通通道,以最大程度地减少皮质内神经探针/组织界面处的组织菌株和局部药物递送。相对于所得的设备机械性能,稳定性和微流体功能,制造过程和设备设计均已优化。优化的设备能够成功地在六周的体内大鼠研究中提供抗氧化溶液。组织学数据表明,多进输出设计最有效地减少了炎症的标记。通过药物输送和软材料作为平台技术的组合方法来减少炎症的能力,可以将来的研究探索添加性疗法,以进一步增强心脏内神经探针的性能和临床应用的寿命。
有机金属卤化物钙钛矿 (OMHP) 是快速、灵敏、大面积光电探测器的有希望的候选材料。在过去十年中,已经开发出几种具有互补优势的技术。薄膜器件很薄,可以扩展到大面积,但具有大量与晶界相关的缺陷。单个块体晶体的纯度更高,但更厚,不易在大面积上生产。在这项工作中,我们介绍了一种微流体辅助技术,可直接在导电图案化基板上实现 OMHP 单晶(微线形式)的受控生长。该技术可以实现具有像素化传感器层的垂直设备。由此产生的设备具有增益、高达 200 AW − 1 的响应度和低至 35 μ s 的快速上升时间。这是首次使用微流体辅助技术在图案化基板上实现 OMHP 垂直设备的演示。
摘要:近年来,在应用和解码神经活动在药物筛查,疾病诊断和脑部计算机相互作用中的编码和解码应用方面的进展激增。为了克服大脑复杂性的限制以及体内研究的伦理考虑,已经提高了整合微功能设备和微电极阵列的神经芯片平台,这不仅可以自定义体外神经元的生长路径,而且还可以监测和调节碎屑生长的专用神经网络。因此,本文回顾了整合微流体设备和微电极阵列的芯片平台的发展历史。首先,我们回顾了高级微电极阵列和微流体设备的设计和应用。之后,我们介绍了神经芯片平台的制造过程。最后,我们重点介绍了这种类型的芯片平台的最新进展,作为脑科学和神经科学领域的研究工具,重点是神经药理学,神经系统疾病和简化的脑模型。这是对神经芯片平台的详细而全面的评论。这项工作旨在实现以下三个目标:(1)总结此类平台的最新设计模式和制造方案,为开发其他新平台提供了参考; (2)在神经病学领域概括了芯片平台的几个重要应用,这将吸引科学家在领域的注意; (3)提出了整合微流体设备和微电极阵列的神经芯片平台的发展方向。
摘要:易受攻击的斑块进展和破裂风险的评估和预测对于诊断,管理和治疗心血管疾病以及可能预防急性心血管事件(例如心脏病发作和中风)至关重要。然而,对斑块脆弱性评估的准确评估及其未来变化的预测需要准确的斑块帽厚度,组织成分和结构定量和机械应力/应变计算。多模式性内血管内超声(IVU),光学相干断层扫描(OCT)和血管造影图像数据和随访的血管造影图像数据是从十名患者中获取的,以获得用于模型构建的准确可靠的斑块形态。为228个匹配的IVUS + OCT切片构建了三维薄片薄度有限元模型,以获得斑块应力/应变数据进行分析。定量斑块盖的厚度和应力/应变指数作为替代定量斑块漏洞指数(PVIS),并采用机器学习方法(随机森林)来预测使用实际患者IVUS + OCT随访数据的PVI变化作为金标准。我们的预测结果表明,CAP-PVI(C-PVI),平均CAP应力PVI(emem-PVI)和平均盖CAP菌株PVI(平均值)(平均值)的最佳预测精度为90.3%(AUC = 0.877),85.6%,85.6%(AUC = 0.867)和83.3%(AUC = 0.867)和83.3%(AUC = 0.809)。最佳组合预测因子比最佳单个预测因子的预测准确性提高了6.6%,平均S-PVI为10.0%,平均SN-PVI为8.0%。结合机械和形态学预测因子可能会导致更好的预测准确性。我们的结果证明了使用多模式IVUS + OCT图像的电势准确,有效地预测斑块盖的厚度和应力/应变指数的变化。
摘要:天然聚合物由于其内在的生物相容性和仿生性,已在很大程度上被研究为组织工程应用的脚手架材料。传统的脚手架制造方法提出了几个局限性,例如使用有机溶剂,获得非均匀结构,孔径的变化以及缺乏孔隙互连性。这些缺点可以根据使用微流体平台的创新和高级生产技术来克服这些缺点。液滴微流体和微流体旋转技术最近在组织工程领域中发现了可用于生产微粒和微纤维的应用,这些微粒和微纤维可以用作支架或三维结构的基础。与标准制造技术相比,基于微流体的技术具有多种优势,例如获得具有均匀尺寸的颗粒和纤维的可能性。因此,可以获得具有极为精确的几何形状,孔分布,孔相互连接性和均匀孔径的支架。微流体也可以代表一种更便宜的制造技术。在这篇综述中,将说明基于天然聚合物的微粒,微纤维和三维支架的微流体制造。还将提供其在不同组织工程领域的应用概述。
我们报告了一种双层微流体装置,以研究限制和化学梯度对野生型大肠杆菌运动性的综合影响。我们在 50 µm 和 10 µm 宽的通道中跟踪单个大肠杆菌,通道高度为 2.5 µm,以产生准二维条件。我们发现与预期相反,即使在没有化学(葡萄糖)梯度的情况下,细菌轨迹也是超扩散的。在引入化学梯度或加强横向限制时,超扩散行为会变得更加明显。在没有化学梯度的情况下,弱限制的游程分布遵循指数分布。限制和化学吸引都会导致这种行为的偏差,在这些条件下,游程分布接近幂律形式。限制和化学吸引都抑制大角度翻滚。我们的结果表明,野生型大肠杆菌在物理限制和化学梯度下以类似的方式调节其运行和翻滚。