摘要。目标。在高风险职业工作的广泛专业人员中检测微渗,对工作场所的安全非常重要。提出了采用储层计算(RC)方法的微填充分类器。特定的回波状态网络(ESN)用于增强微观检测的先前基准性能。方法。使用了基于ESN的新型泄漏积分器进行聚类设计。这种设计的效果在于简单的性能,即使用细粒度的体系结构,其中包含每个群集多达8个神经元,以捕获个性化状态动力学并实现最佳性能。这是使用RC模型实施和评估基于EEG的微骨检测的第一项研究,以检测来自EEG的微渗。主要结果。使用级联的ESN分类器,具有泄漏的积体神经元,使用544个功率频谱特征的60个主要成分。这导致了φ= 0的性能中的一件受试者的平均检测。51±0。07(平均值±SE),AUC-ROC = 0。88±0。 03,AUC-pr = 0。 44±0。 09。 明显的能力。 尽管基于EEG的微质量检测系统的性能仍然被认为是适度的,但这种重新定义的方法在微质量检测中获得了新的基准测试。88±0。03,AUC-pr = 0。44±0。09。明显的能力。尽管基于EEG的微质量检测系统的性能仍然被认为是适度的,但这种重新定义的方法在微质量检测中获得了新的基准测试。
作为一种新的污染物,微塑料(MPS)以其对不同生态系统和生物体的负面影响而闻名。MPS因其小体积而被生态系统轻松地以各种或Ganism的形式吸收,并在受影响的生物体中引起免疫,神经和呼吸道疾病。此外,在受影响的环境中,MP可以释放有毒的作用,并充当特定微生物定植和运输的载体和支架,并导致微生物群和生物地球化学和营养素动态的失衡。为了解决控制MPS对微生物群和生态系统污染的担忧,MPS的微生物生物降解可能被视为有效的环境友好方法。提出的论文的目标是提供有关MPS对微生物群的毒理作用的信息,以讨论MPS微生物定植的负面影响,并以MPS的生物降解能力引入微生物。
摘要 一个年轻的垃圾填埋场渗滤液含有高浓度的总氨,通常高达 2,700 mg/l,在两个不同的实验室规模厌氧反应器中进行了 1,015 天的厌氧处理,这两个反应器配置为污泥床和混合床。本文介绍了这项长期厌氧可处理性研究的最后 265 天。通过使用 FISH(荧光原位杂交)、克隆、DGGE(变性梯度凝胶电泳)和形态分析来识别优势微生物,将高氨浓度对反应器性能的影响与微生物多样性的变化相关联。结果表明,如果在氨浓度高时对反应器进水进行临时 pH 调节,则可以使用 UASB 或混合床反应器成功处理高氨垃圾填埋场渗滤液。因此,COD 去除效率与微生物多样性和反应器配置无关,而是取决于渗滤液的可生物降解部分。在这种情况下,低乙酸盐水平的反应器的稳定性由甲烷菌群的丰富性支持。在这两个反应器中,还检测到了一些甲烷杆菌科种群,而其他产甲烷菌种几乎不存在。然而,在第 860 天终止 pH 调节之后,由于游离氨浓度突然增加到 400 毫克/升,反应器立即变得不稳定。混合床的 COD 去除效率下降到 42%,UASB 反应器的 COD 去除效率下降到 48%。抑制持续时间不足以严重损害大量的甲烷菌细胞;因此,在两次游离氨抑制之后,许多甲烷菌细胞才再次被鉴定出来。然而,随后,甲烷菌细胞的长丝状形态转变为较短的丝状,并失去了聚集特性。关键词克隆;DGGE;FISH;游离氨;垃圾渗滤液;产甲烷菌
奥氏体不锈钢的低温渗碳/氮化 – 合金成分对微观结构和性能的影响 Giulio Maistro 工业与材料科学系 查尔姆斯理工大学 摘要 奥氏体不锈钢是食品、制药、化学、石油和天然气工业等重视耐腐蚀性的应用中最常用的材料之一。然而,低硬度和差的摩擦学性能往往是其应用的障碍。传统表面硬化技术,如高温渗碳(T > 850°C)和氮化(T > 550°C)不适用于这些合金。在这种情况下,富铬碳化物/氮化物在晶界处的快速沉淀会导致合金中的铬消耗并损害耐腐蚀性。自 80 年代中期以来,已经开发出用于奥氏体不锈钢表面硬化的低温热化学处理,包括气体渗碳和等离子氮化。这些过程可以诱导形成无沉淀间隙过饱和亚稳态扩展奥氏体(也称为 S 相),具有优异的硬度和改善的耐磨性,同时保持耐腐蚀性。
森林流域中野火的频率和严重程度的增加有可能显着影响从这些生态系统中导出的可萃取有机物(WEOM)的数量和质量。这项研究检查了实验室加热土壤中WEOM的光学特性,以了解由于加热而在有机物中发生的物理化学变化,并测试了光学参数在评估中的有用性。WEOM吸光度和荧光光谱形状和强度随着土壤加热温度的函数而系统变化。值得注意的是,吸光度和荧光强度,特定的紫外线吸光度,明显的荧光量子产率,特定的荧光发射强度以及最大的荧光发射波长与加热温度表现出一致的变化,并且表明在加热土壤中的WEOM在分子量和芳香的样品中较低。加热土壤中的较低分子量通过尺寸排斥色谱测量来证实。这项工作增加了野火对WEOM发生的分子变化的理解,并表明光学测量(即吸光度和荧光)可用于水分监测火后自动生成有机物。
预期使用Gen III Microplate™测试面板使用94种生化测试提供了标准化的微方法,以剖面并识别革兰氏阴性和革兰氏阴性细菌的广泛范围。生物学的微生物识别系统软件(例如Omnilog®数据收集)用于从Gen III微板岩中的表型模式中鉴定细菌。描述生物Gen III微镀酸盐分析了94个表型测试中的微生物:71个碳源利用分析(图1,列1-9)和23种化学敏感性测定(图1,列,10-12列)。测试面板提供了微生物的“表型指纹”,可用于在物种水平上识别它。所有必要的营养物质和生化物都被预填充并干燥成96孔的微板井。四唑氧化还原染料用于比色表示碳源的利用或对抑制性化学物质的抗性。进行测试非常简单,如图2所示。要鉴定的分离物在琼脂培养基上生长,然后在推荐的细胞密度下悬浮在特殊的“胶凝”接种液3(IF)中。然后将细胞悬浮液接种到Gen III微板酸盐中,每孔100 µL,然后将微孔板孵育以使表型指纹形成。接种时,所有井都无色。在孵育过程中,在细胞可以利用碳源和/或生长的井中呼吸增加。增加的呼吸导致四唑氧化还原染料的减少,形成紫色。图1。负井仍然无色,负面对照井(A-1)也没有碳源。也有一个阳性对照井(A-10)用作10-12列中化学敏感性测定的参考。孵化后,将紫色井的表型指纹与生物学广泛的物种文库进行了比较。如果发现匹配,则将进行分离物的物种水平识别。在微板元素III微板TM
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。