摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
purcell增强量子点(QD)单光子发射和设备亮度的增加,已经证明了各种类型的微腔。在这里,我们提出了第一个实现截断的高斯形状的微腔与QD的截断。实施基于湿化学蚀刻和外延半导体过度生长。实验研究了腔模式及其空间纤维,并与模拟很好地吻合。可以通过制造设计可重复控制具有6000张Q-因子的基本模式波长,而29 L EV的小极化分裂可以重复控制,从而使腔体适应了特定的QD。最后,通过温度调节对腔内QD的过渡进行调节和关闭共振。在共振上减少了一个以上的因子减少的衰减时间清楚地表明purcell的增强,而G(2)(0)¼0.057的二阶相关测量结果证明了QDS单光子特性得以保留。
光子平台是量子技术的绝佳环境,因为弱的光子与环境耦合可以确保较长的相干时间。量子光子学的第二个关键因素是光子之间的相互作用,这可以通过交叉相位调制 (XPM) 形式的光学非线性提供。这种方法支撑了量子光学 1 – 7 和信息处理 8 中的许多拟议应用,但要发挥其潜力,需要强的单光子级非线性相移以及可扩展的非线性元件。在这项工作中,我们表明所需的非线性可以由嵌入量子阱的微柱中的激子极化子提供。它们将激子的强相互作用 9、10 与微米级发射器的可扩展性结合起来。11。使用衰减到单光子平均强度以下的激光束,我们观察到每个极化子的 XPM 高达 3±1 mrad。以我们的工作为第一步,我们为极化子晶格中的量子信息处理铺平了道路。XPM 的量子应用包括远距传物 1 、光子数检测 2 、计量学 4 、密码学 5 和量子信息处理 (QIP),其中它被提议作为电路 6 和测量 7 的途径
光子平台是量子技术的绝佳环境,因为弱光子环境耦合可确保长时间的连贯时间。Quantu-Photonics的第二个关键成分是光子之间的相互作用,可以通过光学非线性以跨相调节(XPM)形式提供。这种方法为量子光学1 - 12中的许多提议的应用和信息处理13,14提供了基础,但是实现其潜力需要强大的单光子级非线性相移以及可扩展的非线性元件。在这项工作中,我们表明,具有嵌入式量子孔的微柱中的激子 - 孔子可以提供所需的非线性。这些结合了激子15、16的强相互作用与微米大小的发射器的可伸缩性。17 - 19。,我们使用衰减至单个光子平均强度的激光梁观察到每个粒子的XPM高达3±1 mrad。我们的工作是第一个垫脚石,我们放下了一条途径,以在极化晶格中进行量子信息处理。XPM的量子应用包括传送1,光子数检测2,计量学6、7,密码8和量子信息处理(QIP)(QIP),在其中提议将其作为通往电路9的途径-10
修读“项⽬报告”,以获得,以获得21学“实习及报告”,的学⽣须修读以下八⾨选修学科单元/科⽬,以获,以获24学分︰453 3数字集成电路453数据转换器集成电路设计453数据转换器集成电路设计453数据转换器集成电路设计453柔性交流输电系统453 3柔性交流输电系统453电源管理集成电路设计453 45 3 3⽣物医学⼯程专题453⽣物医学⼯程专题453 3
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像