摘要 驯化微藻有望为人类家庭和工业消费提供可持续的各种生物资源。由于微藻工程技术的限制,其潜力还远未得到充分挖掘。相关技术不如异养微生物、蓝藻和植物的技术那么发达。然而,最近对微藻代谢工程、基因组编辑和合成生物学的研究极大地帮助提高了转化效率,并为该领域带来了新的见解。因此,本文总结了微藻生物技术的最新发展,并探讨了通过代谢工程和合成生物学过程生产特色产品和商品产品的前景。在简要介绍了经验工程方法和载体设计之后,本文重点介绍了定量转化盒设计,详细阐述了目标编辑方法和新兴的藻类细胞代谢数字化设计,以实现高产量的有价值产品。这些进步使得微藻工程方式从单基因和基于酶的代谢工程转变为系统级精确工程,从带有转基因 (GM) 标签的细胞转变为不带转基因标签的细胞,并最终从概念验证转变为切实的工业应用。最后,提出了微藻工程的未来趋势,旨在为特定菌株的特色产品和商品产品在新发现的物种中建立个性化转化系统,同时在模型藻类物种中开发复杂的通用工具包。
进行了本研究,以评估三种不同饮食中的微藻对生长,肠道组织学,免疫生物标志物以及对细菌病原体(Vibrio Anguillarum)少年彩虹鳟鱼,Oncorhyhhynchus mykiss的影响。制备了四种实验饮食,包括基础饮食(CON)和三种含有小球藻的饮食。(CHL),sp。(hae)或schizochytrium sp。(SCH),每个Microalga的含量为0.5%,在基础饮食中补充。最初体重为12.16±0.01 g(平均值±SD)的180个少年彩虹鳟鱼被随机分配到12个储罐中,并通过半电流系统饲养。在进食试验的六周后,体重增加(99.4%),特定的生长速率(1.92%/天)和骨过氧化物酶活性(5.08)(5.08)的HAE明显高于其他饮食饮食的鱼(p <0.05)。喂食HAE饮食的鱼的肠绒毛长度(1.34 µm)明显高于喂食CHL(1.13 µm)和CON(1.14 µm)饮食的肠道。在腹膜内注射细菌病原体V. anguillarum后27天记录累积存活率(CSR)。喂养HAE饮食的鱼类的企业社会责任(75%)明显高于喂养其他饮食的饮食。建议sp。(饮食中纳入0.5%)可能会提高体重增加,特异性生长速率,肠绒毛长度和骨髓氧化酶活性,并提高针对V. anguillarum挑战的青少年彩虹鳟鱼的存活率。
“将石墨材料塑造成高级应用的复杂几何形状,一直是一个关键挑战,限制了其广泛采用。”滑铁卢化学工程系教授Milad Kamkar博士说。“使用我们提出的方法,我们可以将3D-Print石墨烯变成任何形状。”
沿海地区在这项研究中表现出更强的非洲混合物,而北部也门也门地区的北部地区表明与阿拉伯和黎凡特有更紧密的遗传关系。在也门漫长而持续的内战中,这项研究发现,沿海和内陆分裂的历史基因组起源不同,这与当前冲突的划分线相处。
微藻商业化的主要途径。它们可以用作整体或加工,并且由于其在蛋白质,多不饱和脂肪酸,颜料,维生素和矿物质或天然食品着色方面的丰富成分而被用作食物补充剂(Junior等人2020)。其营养品质证明了它们用于动物营养的应用,尤其是在水产养殖中,在水产养殖中,微藻用于喂养双壳类软体动物,甲壳类动物甚至某些鱼类的幼虫阶段。当时化妆品行业似乎是销售基于微藻产品的最有利可图的领域之一。从这些微生物中得出的生物活性分子用于日光照度,化妆,抗衰老和保湿产物以及护发产品(Junior等人2020)。微藻的化学多样性还提供了开发新的活性成分和药物的可能性。许多分子具有抗肿瘤或抗病毒特性,并且对心血管疾病具有保护作用(Laurienzo,2010; Ghosh等人,2015年)。
除了对海洋碳循环和食物网至关重要之外,海洋微藻目前还被用于不同的用途,包括功能性食品。这些光合微生物产生高质量的蛋白质、脂质和碳水化合物,是人类营养丰富的食物来源。例如,它们的蛋白质和脂质含有我们饮食中必需的氨基酸和多不饱和脂肪酸 (omega-3)。就碳水化合物而言,据报道它们具有抗病毒和抗炎特性。意识到这些营养特性后,科学家们专注于开发功能性食品和技术。因此,本期特刊旨在为微藻功能性食品的开发和评估做出贡献。我们向不同领域的研究人员发出邀请,包括但不限于新菌株的培养和营养成分、生物质和细胞外分子的分离和纯化以及食品的配方和特性。
1。pormidium。camptonemaplanktothrixOscillas ......................................................................... Tychonema lyngbya 134 6。 pleurocapsa 134 7。 Pseudanaaaaena 135 8。 leptolyngby 135Oscillas .........................................................................Tychonemalyngbya 134 6。pleurocapsa 134 7。Pseudanaaaaena 135 8。leptolyngby 135
人们对聚二乙炔的机械荧光变色行为进行了深入研究:通过二乙炔前体的光聚合获得的蓝色非发光固相在机械刺激下转化为红色发光固相。受这些化合物作为微尺度力探针的巨大潜力的启发,机械荧光变色在微藻生物技术中得以实现。事实上,微流控芯片中的机械诱导可以削弱细胞包膜并促进微藻产生的高附加值化合物的提取。据报告,基于聚二乙炔的机械荧光变色传感器能够检测微通道中施加在微藻上的应力。设计了一种三乙氧基硅烷二乙炔前体,它在紫色低发射相中光聚合,并在机械应力下转化为红色高发射相。此后,制定了一项协议,以化学方式在微流体通道中接枝一层聚二乙炔层,并最终证明,在有限区域内压缩莱茵衣藻微藻时,摩擦应力会通过聚二乙炔的机械荧光变色响应显示出来,导致荧光显著增强,最高可达 83%。这种微尺度力探针原型为微流体环境中的微尺度应力检测奠定了基础,它不仅适用于微藻,还适用于任何机械响应的细胞样本。
从微藻中提取的富含胞外多糖 (EPS) 的提取物具有广泛的生物活性,包括抗菌和抗真菌特性。然而,这些特性因微藻种类、所用的抗菌检测方法和所选的目标微生物而异。这项研究旨在调查从五种很少在此方面研究的微藻中获得的富含胞外多糖的提取物的抗菌特性。本研究选定的目标微生物包括革兰氏阳性菌 (枯草芽孢杆菌) 和革兰氏阴性菌 (铜绿假单胞菌)、真菌 (枝孢菌) 和微藻 (小球藻)。使用扩散测定法、肉汤微量稀释测定法和使用吸光度的生长测量来比较方法并充分评估抗菌特性。使用吸光度测量,对于至少一种富含 EPS 的微藻提取物,所有目标物种的生长率抑制率至少达到 80%。在 500 mgGlcEq · L − 1 的浓度下,枯草芽孢杆菌的活性提取物大部分来自莱茵衣藻(生长抑制率 87.1%)、普通念珠藻(53.7%)和多色紫球藻(46.4%)。发现莱茵衣藻(86.2%)、普通念珠藻(59.9%)和紫球藻(31.1%)的富含 EPS 的提取物对铜绿假单胞菌最有效。微绿球藻(86.0%)、莱茵衣藻(16.6%)和多色紫球藻(17.8%)的 EPS 提取物的抗真菌活性最高。结果表明,富含 EPS 的 N. commune 提取物(99.3%)、C. reinhardtii 提取物(84.8%)和 M. gaditana 提取物(84.1%)可抑制微藻生长。据我们所知,这项研究首次探索了富含 EPS 的微藻提取物的杀藻特性,为未来研究其潜在应用确定了有希望的候选物。
微藻对生物燃料和生物产生产生的强大潜力;但是,有效的收获方法仍然是增强微藻产品的经济竞争力的关键挑战。这项研究引入了一种简单的方法,用于制造适合场景的自我清洁微滤膜。微藻溶液通过用ZnO涂层氧化铝底物。使用反应性磁控溅射沉积ZnO层,并通过受控涂层厚度调整膜的功能性能。表面表征证实了均匀的晶体ZnO层的形成。发现Zno涂层膜的太阳光吸收随涂层厚度而变化。膜的水接触角从ZnO涂层后的80°降低至42°,表明亲水性大幅增加。最初均未涂层和ZnO涂层的氧化铝膜显示出约55 l m⁻2H⁻1(LMH)的渗透通量,但ZnO涂层的膜表现出优质的结变耐药性,与32%滤过32%的embrane incembrane incebrans相比,在32%的滤膜后仅5%通量下降。 在最佳条件下,ZnO涂层的膜在太阳能模拟器暴露的30分钟内实现了完全的通量恢复,突出了它们出色的光催化自我清洁能力。 在三个重复的过滤周期和膜恢复的情况下,Zno涂层的MEM麸皮的性能保持稳定,标准DEVI <5%,证实了Zno涂层的耐用性。最初均未涂层和ZnO涂层的氧化铝膜显示出约55 l m⁻2H⁻1(LMH)的渗透通量,但ZnO涂层的膜表现出优质的结变耐药性,与32%滤过32%的embrane incembrane incebrans相比,在32%的滤膜后仅5%通量下降。在最佳条件下,ZnO涂层的膜在太阳能模拟器暴露的30分钟内实现了完全的通量恢复,突出了它们出色的光催化自我清洁能力。在三个重复的过滤周期和膜恢复的情况下,Zno涂层的MEM麸皮的性能保持稳定,标准DEVI <5%,证实了Zno涂层的耐用性。这些发现突出了Zno涂层的陶瓷膜的潜力,作为可持续微藻收集的具有成本效益的解决方案。