机构 1 德国奥格斯堡大学第三医学院,奥格斯堡 2 比利时鲁汶天主教大学 (KUL) 胃肠病学和肝病学系,鲁汶大学医院 TARGID 3 意大利罗马阿里恰 Ospedale dei Castelli 医院胃肠病学和消化内镜科 4 意大利罗马大学解剖学、组织学、法医学和骨科科学系 5 葡萄牙波尔图综合癌症中心和 RISE@CI-IPOP(健康研究网络)胃肠病学系 6 葡萄牙波尔图大学医学院 MEDCIDS 7 英国朴茨茅斯朴茨茅斯医院大学 NHS 基金会内镜科 8 英国伦敦伦敦大学学院医院 Wellcome/EPSRC 介入和外科科学中心 9 外科和介入科学,伦敦大学学院医院,伦敦,英国 10 胃肠服务,伦敦大学学院医院,伦敦,英国
支气管镜检查后感染是呼吸医学中的一个重要问题,因为它们可能会加剧患者的发病率,尤其是对于免疫功能低下的人或已有肺部疾病的人,而肺部疾病之一就是感染。感染源于下呼吸道病原体,大多数感染源于再处理操作。当支气管镜与呼吸道粘膜和血管接触时,就会发生感染。菌血症是支气管镜检查后感染更常见的并发症,而不是肺炎。它通常涉及凝固酶阴性或阳性葡萄球菌、非溶血性或溶血性链球菌、柠檬酸杆菌属和克雷伯氏菌。然而,一般来说,支气管镜检查后感染的发病率主要是由革兰氏阴性细菌引起的。各种风险都可能影响支气管镜检查后感染,从而增加疾病的严重程度直至死亡。提高服从性和预防感染传播非常重要。减少细菌病原体、控制感染是降低支气管镜检查后感染死亡率的重要措施,因此本研究对支气管镜检查后感染进行详细综述。
在过去的几十年中,皮肤镜检查的流行度已大大增加,并且已经检查了多个病变。该设备采用放大倍率和偏振光来照亮病变的最小特征[3]。此外,当以非接触方式使用的方式使用更深刻的系统时,极化辐射几乎没有反射渗透表皮。它解释了传统的治疗性皮炎与纳米级的皮肤病学有关人类视力看不见的形态特征的联系[4]。由于研究的研究量有限,因此集中在棕榈底疣,玉米和升炉中的文献结局中,在解析和无效的情况下查看皮肤镜的水平。
传统镜子在反射时会改变圆偏振光的手性。然而,人们对设计和制造手性保持镜子以及手性反射超表面的需求日益增长,这些镜子的反射光子自旋态可调,可在紫外和可见光域的宽波长范围内工作。到目前为止,大多数手性镜都是通过自上而下的技术制备的,例如电子束光刻,这些技术成本非常高,并且难以扩展到宏观设备。这里介绍了一种有效的自下而上的策略,用于通过使用逐层组装取向银纳米线层来制造手性镜,这些银纳米线层是通过在半反射银层上进行掠入射喷涂制备的。由此产生的手性超表面对紫外、可见光和近红外域中宽波长范围内的圆偏振光显示出结构相关的差分反射率,达到了极高的品质因数。它们的差分反射率可达到最大偏振效率的 95%,且反射光的旋向性部分保留。这些具有可调手性反射率的大面积手性镜在光学、传感和手性光与物质相互作用等各个领域都有着广阔的应用前景。
如今,尤其是对于便携式设备而言,低功耗是延长电池寿命的基本约束。在这种情况下,传统电路无法满足要求。需要重新设计采用较低技术的电路,使其在减少供电的情况下也能正常工作,这是设计师的主要关注点。虽然规模化技术有助于通过要求低供电来降低功耗,但同时,如果设计是模拟的,二阶效应就会变得突出。在数字中,这种影响不会使性能下降太多。在任何 IC 中,性能都由用于构建它的组件决定。如果 IC 中使用的子块消耗的功率较低,则意味着整个系统的性能会更好。对于模拟 IC,电流镜是广泛用于大多数电路的基本块之一。电流镜的理想特性包括大动态范围、宽带宽、低输入电阻和高输出电阻。然而,在纳米技术中,
摘要:Callan–Giddings–Harvey–Strominger 黑洞的光谱和温度与平坦时空中的加速反射边界条件相对应。beta 系数与移动镜模型相同,其中加速度在实验室时间内呈指数增长。黑洞中心由完全反射的规律性条件建模,该条件使场模式发生红移,这是粒子产生的源头。除了计算能量通量外,我们还找到了与黑洞质量和引力模拟系统中的宇宙常数相关的相应移动镜参数。推广到任何镜像轨迹,我们推导出自力(洛伦兹-亚伯拉罕-狄拉克),一致地将其和拉莫尔功率与纠缠熵联系起来,从而引发了对信息流加速辐射的解释。将镜面自力和辐射功率施加到特定的CGHS黑洞模拟动镜上,揭示了渐近热平衡过程中视界信息的物理特性。
作为一种新的污染物,微塑料(MPS)以其对不同生态系统和生物体的负面影响而闻名。MPS因其小体积而被生态系统轻松地以各种或Ganism的形式吸收,并在受影响的生物体中引起免疫,神经和呼吸道疾病。此外,在受影响的环境中,MP可以释放有毒的作用,并充当特定微生物定植和运输的载体和支架,并导致微生物群和生物地球化学和营养素动态的失衡。为了解决控制MPS对微生物群和生态系统污染的担忧,MPS的微生物生物降解可能被视为有效的环境友好方法。提出的论文的目标是提供有关MPS对微生物群的毒理作用的信息,以讨论MPS微生物定植的负面影响,并以MPS的生物降解能力引入微生物。
表面微加工成功的光学应用之一是开发静电驱动微机械镜阵列(协调、可移动的反射或折射元件的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜段,用作较大显示器中的一个像素,元件的驱动使用二进制数字控制信号并行协调。在这样的系统中,已经证明简单微机械致动器的制造成品率可以接近 100%。此外,已经确定可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化的 CMOS 电子阵列上构建 MEMS 结构来实现的。已经提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微机械连续膜可变形镜。在自适应光学中,重要的是可变形镜既连续又可精确调节。本文描述的设备是使用表面微机械技术制造的第一种连续镜。� 体微机械连续镜之前已经展示过。2 � 表面微机械镜已在波士顿大学设计、制造和测试。该设备由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于底层表面法向静电致动器阵列上。两个特点将该设备与以前的表面微机械镜系统区分开来。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有因分段边缘而产生的衍射干涉,也没有因填充因子低于 1 而导致的光强度损失。此外,新的可变形镜面装置可以精确、连续地控制镜面元件