#名人II(印度的电动汽车采用和制造更快):卢比的支出。100亿卢比3年,在总预算支持中,已分配了约86%的基金,以激励需求,以便在该国提高对电动汽车的需求。
图1。(a)我们提出的拖拉术算法的概述:给定种子点或部分已知的流线,我们的方法提取了相应的局部和邻域DMRI信号,以形成输入数据序列(x 1,…,x t)。然后将此序列馈送到我们的网络中,以预测传播的方向。随后,流线根据给定的步长和传播方向生长。更新的流线(不完整)将是我们方法的新输入,
o高风险血管手术时有脑缺血的风险(例如,主动脉弓,胸腔主动脉的手术,颈动脉内部切除术,颅内动脉内部畸形,支气管动脉畸形或乳化液或灌木囊肿的过程) with high risk of cord injury (e.g., spinal cord tumor, spinal fracture with cord compression, mechanical spinal distraction, correction of scoliosis surgery) o Other procedures with a high risk of potential injury to essential nervous system structures (e.g., Interventional neuroradiology, neuroma of peripheral nerve, leg lengthening procedure when there is traction on the sciatic nerve).术中神经生理学监测对脊柱的手术不符合上述标准,这在医学上不需要(例如标准的前宫颈椎间盘切除术和融合,宫颈椎间盘置换术)。腰部手术期间术中神经生理学监测不符合上述标准是不需要的(例如腰椎融合,椎板切除术,椎间盘切除术)。术中神经生理学监测在任何其他迹象上都不是医学上必需的,包括以下任何迹象:•监测硬膜外注射•在放射线消融/神经膜上监测•在放置脊髓刺激剂或肠内疼痛泵期间监测•监测。术中神经生理学监测在未达到上述标准时被视为研究。在前宫颈脊柱手术期间对复发性喉神经的术中神经生理监测不符合食管外科手术的标准,被认为是研究的。由于缺乏美国食品和药物管理局的批准,术中对视觉诱发电位的术中监测被认为是研究的,因此使用经颅磁刺激对运动诱发电位进行了术中监测被认为是研究的。
随着通信技术的升级和量子计算的飞速发展,经典的数字签名方案面临着前所未有的挑战,对量子数字签名的研究势在必行。本文提出一种基于五量子比特纠缠态受控量子隐形传态的多代理签名方案。该方案采用量子傅里叶变换作为加密方法对消息进行加密,与量子一次一密相比提高了量子效率。采用满足量子比特阈值量子纠错要求的五量子比特最大纠缠态作为量子通道,保证了方案的稳定性。安全性分析表明,该方案具有不可伪造、不可否认的特点,能够抵抗截获重发攻击。
量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展
回想一下位移算符如何变换光子振幅算符,ˆ D ( α )ˆ a † ˆ D † = ˆ a † − α ∗ ,状态可以写成位移和创造的连续
量子模拟的复杂性并非仅仅源于纠缠。量子态复杂性的关键方面与非稳定器或魔法有关 [1]。Gottesman-Knill 定理 [2] 表明,即使是一些高度纠缠的状态也可以被有效地模拟。因此,魔法是一种资源,代表准备量子态所需的非 Clifford 操作(例如 T 门)的数量。我们使用稳定器 R´enyi 熵 [3] 证明,与具有零动量的状态相比,具有非零晶格动量的退化量子多体基态允许魔法的增量 [4]。我们通过分析量化了这一增量,并展示了有限动量不仅增加了长程纠缠 [5],还导致魔法的变化。此外,我们还提供了 W 状态及其广义(量子信息界经常讨论)与受挫自旋链基态之间的联系。
量子隐形传态的理想实现依赖于获得最大纠缠态;然而,在实践中,这种理想状态通常是无法获得的,人们只能实现近似隐形传态。考虑到这一点,我们提出了一种量化使用任意资源状态时近似隐形传态性能的方法。更具体地说,在将近似隐形传态任务定义为对单向局部操作和经典通信 (LOCC) 信道上的模拟误差的优化之后,我们通过对更大的两 PPT 可扩展信道集进行优化来建立此优化任务的半确定松弛。我们论文中的主要分析计算包括利用身份信道的酉协方差对称性来显著降低后者优化的计算成本。接下来,通过利用近似隐形传态和量子误差校正之间的已知联系,我们还应用这些概念来建立给定量子信道上近似量子误差校正性能的界限。最后,我们评估各种资源状态和渠道示例的界限。
本文感兴趣的特定量子态是两个相位相反的相干态的叠加,通常称为(薛定谔)猫态。猫态可用作量子计算机中的逻辑量子比特基础 [2, 3]。它们还可以用作干涉仪的输入态,干涉仪能够以比光波长通常施加的限制更高的精度测量距离 [4]。仅通过幺正演化将单个相干态转换为猫态需要很强的非线性。此外,猫态对光子吸收的退相干极为敏感。出于这些原因,平均包含多个光子的猫态仅在腔量子电动力学实验中产生,在该实验中,原子与限制在高精度光学腔内的电磁场相互作用 [5, 6]。在这种实验中,腔将光学模式限制在一个很小的体积内,因此
人们从物质分类的角度发现了许多全新的拓扑电子材料,包括拓扑绝缘体[5–8]和拓扑半金属[9]。与此同时,量子力学波与经典波的类比启发人们将凝聚态物理学中的许多概念推广到经典波系统,如电磁波、声波和机械波系统。直观地,人们可以将经典波的控制方程(例如电磁波的麦克斯韦方程)转化为哈密顿量。按照这种方法,最初为量子力学波提出的拓扑相最近已在各种经典波系统中实现,[10–17],从而实现了拓扑激光器[18–21]、鲁棒光延迟线[22]和高质量片上通信等许多实际应用。 [23,24] 最近的进展进一步将拓扑态从厄米波系统扩展到非厄米波系统,