我们通过在非微扰水平上引入量子非谐性来研究高压冰的结构和热力学性质。量子涨落使 VIII 相(具有不对称 H 键)和 X 相(具有对称 H 键)之间的相变临界压力从 0K 时的经典值 116 GPa 降低了 65 GPa。此外,量子效应使其在很宽的温度范围内(0K-300K)不受温度影响,这与通过振动光谱获得的实验估计值一致,与经典近似中发现的强烈温度依赖性形成鲜明对比。状态方程显示出与实验证据一致的转变指纹。此外,我们证明,在我们的方法中,VII 相中的质子无序对 X 相的发生影响可以忽略不计。最后,我们高精度地再现了由于氢到氘的取代而导致的 10 GPa 同位素偏移。
如今的摘要,能源资源(石油,煤炭和天然气)有限,近年来转向替代或可持续能源的研究有所增加。在可持续能源中,太阳能吸引了最大的关注。许多行业的研究人员正在设计各种表现效果更好的材料,使用太阳能的最重要点是将阳光的有效转化为电能。i这项研究SR掺杂的Batio3候选者具有强烈的光致敏性和较大的电磁系数,使其成为光伏系统中半导体的合适晶体。在这项研究中,通过抑制功能理论(DFT)计算了BATIO3的光学特性。关键字:能源资源,太阳能电池,光学特性,抑制功能理论(DFT)。
糖胺聚糖(GAGS)在调节骨形态发生蛋白(BMP)信号传导中的作用代表了最近和未置换的区域。矛盾的报告提出了双重影响:有些表示积极影响,而另一些则表现出负面影响。这种二元性表明插口的定位(在细胞表面或细胞外基质内)或特定类型的GAG可能决定其信号传导作用。负责BMP2结合的乙酰肝素(HS)的精确硫酸盐模式仍然难以捉摸。BMP2表现出比其他GAG的结合偏爱与HS结合。使用模仿细胞外基质的特征良好的生物材料,我们的研究表明,与硫酸软骨素(CS)相反,HS促进了细胞外空间中的BMP2信号传导,从而增强了细胞表面的BMP2生物活性。进一步的观察结果表明,HS六糖内的中央IDOA(2 s)-GLCNS(6s)三硫化基序可增强结合。尽管如此,BMP2还是对各种HS硫酸盐类型和序列的适应性程度。分子动态模拟将这种适应性归因于BMP2 N末端柔韧性。我们的发现说明了GAG和BMP信号之间的复杂相互作用,突出了定位和特定硫酸化模式的重要性。这种理解对具有针对BMP信号通路的治疗应用的生物材料的发展具有影响。
本文研究使用物理信息神经网络 (PINN) 计算时间相关的狄拉克方程,PINN 是科学机器学习中一个强大的新工具,它避免了使用微分算子的近似导数。PINN 以参数化(深度)神经网络的形式搜索解,其导数(时间和空间)由自动微分实现。计算成本的增加源于需要使用随机梯度法求解高维优化问题,并在训练网络中使用大量类似于标准偏微分方程求解器离散化点的点。具体而言,我们推导了一种基于 PINN 的算法,并展示了其应用于不同物理框架下的狄拉克方程时的一些关键基本性质。
摘要简介:人工智能技术已导致医学和医疗保健、环境评估、智慧城市、智能监控和安全等各个行业的变革性变化。在本文中,研究了人工智能的双重性质。材料和方法:这是一篇描述人工智能社会伦理问题的评论文章。结论:尽管人工智能有许多令人惊叹的潜在应用,但人工智能存在伦理和双重用途问题,需要加强治理和警惕。解决这些问题需要遵守基本的道德原则。在此,我们介绍了人工智能的各个相关维度,并在道德概念的视角下进行了讨论。关键词:伦理、人工智能 (AI)、数字化转型。引用方式:Talha Khalil A、Shinwari ZK。人工智能的双重性质;数字化转型中的双刃剑;伦理分析,Int J Ethics Soc。2024;6(2):1-8。doi: 10.22034/ijethics.6.2.1
电子邮件:oleksandrmalyi@gmail.com 摘要:传统固体物理学长期以来将材料的光学特性与其电子结构关联起来。然而,最近对本征间隙金属的发现挑战了这一经典观点。间隙金属具有不同于金属和绝缘体的电子特性,具有大量未经任何有意掺杂的自由载流子和内部带隙。这种独特的电子结构使间隙金属可能优于通过有意掺杂宽带隙绝缘体设计的材料。尽管间隙金属具有透明导体等有希望的应用,但由于缺乏对其电子能带结构与光学特性之间相关性的了解,因此为特定目的设计间隙金属仍然具有挑战性。本研究重点关注有间隙金属的代表性实例,并展示了以下情况:(i) 在可见光范围内具有强带内吸收的有间隙金属(例如 CaN 2 ),(ii) 在可见光范围内具有强带间吸收的有间隙金属(例如 SrNbO 3 ),(iii) 有间隙金属(例如 Sr 5 Nb 5 O 17 ),这些金属是潜在的透明导体。我们探索了识别透明导体的潜在间隙金属的复杂性,并提出了发现新一代透明导体的逆材料设计原理。
本文探讨了实现响应性和交互性的前端开发技术的关键方面,以及增强三种核心技术的优化策略。虽然 Bootstrap、Media Queries 和 Flow Layout 等某些技术被开发人员广泛使用和青睐,但它们可能并不适合所有类型的网站。因此,不断探索新技术对于持续改进至关重要。
[研究背景] 在当今的超老龄化社会中,因疾病或受伤而患有骨骼和关节疾病的人数增加正在成为一个问题,对于植入体内进行治疗的生物材料的需求日益增加。金属材料具有强度与延展性优异的平衡性,且机械可靠性高,因此被广泛用作必须支撑大负荷的骨替代植入物。 植入物需要具有优异的耐磨性和耐腐蚀性。但由于它是一种高强度的金属材料,其力学性能一般与柔韧的活骨有显著差异,而且其特别高的杨氏模量是有问题的。当植入物的杨氏模量远高于骨骼时,大部分力会施加在植入物上而不是周围的骨骼上(这种现象称为应力屏蔽),这会导致骨质萎缩、骨矿物质密度降低和骨折风险增加。因此,近年来,需要开发具有与活骨相当的低杨氏模量的新型金属材料。 临床上最常用的生物医学金属材料是价格低廉的不锈钢SUS316L、耐磨性优良的CoCr合金、杨氏模量相对较低的Ti(钛)合金。然而,不锈钢和现有的钴铬合金的杨氏模量大约比活骨高10倍。虽然存在杨氏模量较低的Ti合金,但其杨氏模量高于活骨,且存在耐磨性低的问题。目前,很少有金属材料能具有与活体骨骼相当的杨氏模量,同时还具有优异的耐磨性和耐腐蚀性。特别是,低杨氏模量这一重要的机械性能通常与高耐磨性之间存在权衡关系,开发出一种兼具这些特性的新型合金一直很困难。 另一方面,在尖端医疗中使用的超弹性合金中,表现出约8%超弹性应变的NiTi(镍钛)合金的应用最为广泛。然而,NiTi合金中含有较高的Ni元素,人们担心其可能会引起过敏反应。为此,人们开发出了不含Ni的Ti基超弹性合金,但其超弹性应变仅为NiTi合金的一半左右。 【主要发现】
1个国家材料研究所,原子街,编号405a,077125罗马尼亚玛格勒; ciobanucs@gmail.com(C.S.C.); simonaiconaru@gmail.com(S.L.I。); catalin.negrila@infim.ro(c.c.n.); ghegoiuliliana@gmail.com(l.g。)2 Laboratoire Ond et Milieux Complexs(LOMC),法国国家科学研究中心(CNRS UMR 6294),Le Havre Normandy,75 Rue Bellot,法国76600 RUE BELLOT; damien.leduc@univ-lehavre.fr(D.L.); elkettani@univ-lehavre.fr(M.E.C.E.K.); philippe.zelmar@univ-lehavre.fr(P.Z.)3机械学系,布加勒斯特大学Politehnica,bn 002,313 Splaiul Independentei,6,060042 Bucharest,罗马尼亚4个细胞和分子病理学系Stefan S. Nicolau病毒学学院,罗马尼亚学院,罗马尼亚学院cbleotu@yahoo.com 5国家微型和纳米材料中心,布加勒斯特大学Politehnica,罗马尼亚布加勒斯特,布加勒斯特; truscaroxana@yahoo.com *通信:dpredoi@gmail.com(D.P.); predoi@gmail.com(m.v.p.)