在一项为期两年的试点项目之后,日本农业,林业和渔业部(MAFF)于2024年3月1日正式推出了其温室气(GHG)减少标签系统。与绿色食品系统(Midori)策略一致,Maff促进了整个食品供应链中的脱碳化,目的是建立可持续的食品系统。为此,MAFF促进了与食品标签的“可视化”减少环境影响的工作,以促进公众对此类努力的理解,允许消费者做出可持续的购买决策,并促进对环境友好的农业供应链的投资。标签系统允许生产者根据MAFF评估和标签指南的环境影响减少农产品(仅日本)(以下称为“指南”),计算其温室气体排放和降低贡献率。标签表明与特定区域的常规培养的温室气体排放相比,温室气体排放的贡献率降低。排放速率由恒星数量表示:一颗恒星表明减少5%,两颗恒星表明降低了10%,三颗恒星表示将降低20%或更多(图1)。标签是自愿的,生产者自我欺骗了他们的环境实践。使用标签不需要第三方验证,但是,如果对报告的信息有疑问,MAFF可以要求生产者的原始数据。Maff澄清说,尚未确定使用标签和碳信用额之间的潜在关系。此外,该准则还规定,标签系统应对不合理的保费和误导性表示。2,随着企业越来越寻求采用温室气体排放工作,Maff预计食品加工者和分销商可能会使用GHG排放标签作为购买产品的指南,以增加公司自己的GHG减少工作。3 Maff还预计,参与标签系统将使生产者有机会扩大销售渠道,并致力于减少温室气体排放工作,并在寻求投资和贷款时提供竞争优势。大米的生物多样性保护标签:除了减少温室气体的标签外,MAFF还创建了用于大米的生物多样性保护的标签系统,该系统与GHG还原标签一起使用(图2)。根据准则,两个标签都可以附加在产品,产品包装,海报,
准确稳定的航天器指向是许多天文观测的要求。特别挑战纳米卫星,因为表面积不利 - 质量比和甚至最小的态度控制系统所需的量。这项工作探讨了无执行器精度或执行器引起的干扰(例如抖动)不受限制的机构中对天体物理态度知识和控制的局限性。对原型6U立方体上的外部干扰进行了建模,并根据可用体积内的望远镜的可用恒星量和掌握限制感测知识计算。使用模型预测的控制方案集成了这些输入。对于1 Hz的简单测试用例,具有85毫米望远镜和单个11级恒星,可实现的身体指向预计为0.39弧秒。对于更一般的限制,可以整合可用的星光,可实现的态度感应大约为1毫米秒,这导致了应用控制模型后的20 milliarcseconds的预测身体指向精度。这些结果表明,在达到天体物理和环境限制之前,态度传感和控制系统的重大空间。
不同文化如何看待夜空,包括星座和神话 通过望远镜设计的变化,观察夜空的进步 有哪些不同类型的恒星和星系? 我们的太阳系是什么样的 我们如何处理太空图像 如何成为一名火箭科学家 世界各地的航天机构 系外行星、外星生物学、外星化学和外星医学 太空旅游和私人太空旅行
上下文。在空间光度光曲线中,恒星浮标丰富。由于现在有足够大的数量可用,因此对其整体时间形态的统计研究是及时的。目标。我们使用来自过渡系系外行星调查卫星(TESS)的光曲线来研究超出持续时间和振幅的简单参数化的恒星曲线的形状,我们揭示了与天体物理参数的可能联系。方法。我们训练并使用了FlatWrm2长期记忆神经网络,以从任务的第一年(部门1-69)中找到2分钟Cadence Tess Light曲线中的恒星曲线。我们将这些浮雕缩放到可比的标准形状,并使用主成分分析以简洁的方式描述其时间形态。我们调查了平流如何按主序列变化,并测试了单个浮雕是否持有有关其宿主恒星的任何信息。我们还使用极端紫外线辐照时间序列也将相似的技术应用于太阳浮游。结果。我们的最终目录在约14 000星上包含约120 000台。由于严格的过滤和最终的手动审查,该样本几乎没有误报,尽管以降低完整性为代价。使用此量为目录,我们检测到平均量的依赖性是光谱类型的形状。这些变化对于单个浮华而言并不明显。它们只有在平均成千上万事件时才出现。我们发现在平面空间中没有强烈的聚类。我们创建了新的分析量是不同类型的恒星的模板,并且我们提出了一种采样现实浮游的技术,以及一种定位具有相似形状的浮标的方法。the the the the the the the the the提取的平流是形状,用于训练flatwrm2的数据公开可用。
上下文。恒星元素丰度通常用于通过假设行星对主要耐火元件的相对丰度(Fe,Mg和Si)的相对丰度与宿主恒星相似,从而限制了岩石系外行星的内部。最近,在低质量行星及其宿主星的组成中发现了非对一的相关性。因此,进一步探索较大岩石系外行星样本的相关性是引起极大的兴趣。目标。我们专注于大量的岩石系外行星,并计算其大量元素丰度比。我们通过比较这些难治性元件的丰度比分析了岩石系外行星及其宿主星之间的定量相关性。方法。岩石系外行星的内部被认为是带有硅酸盐地幔的富铁芯。,我们使用贝叶斯统计方法从其测得的质量和半径上限制了岩石系外行星的大量组成。然后,我们使用正交距离回归(ODR)来表征岩石系外行星及其宿主星之间的组成相关性。结果。一些岩石外球星人被证明具有高铁质量的馏分,因此可能具有富含铁的超核。我们发现岩石系外行星的铁含量取决于其宿主星的金属性[Fe/H]。围绕较高金属恒星形成的行星通常跨越更大的铁质量,从而允许更高的铁含量。结果表明,大多数岩石行星相对于初始的原球盘更富含铁。此外,我们直接将岩石系外行星的铁质量分数与从其宿主恒星的难治性元素丰度比推导的铁质级分。
1 天体物理学小组,基尔大学,基尔,斯塔德郡 ST5 5BG,英国 2 马克斯普朗克研究所 Sonnensystemforschung,Justus-von-Liebig-Weg 3,D-37077 哥廷根,德国 3 波兰科学院尼古拉斯·哥白尼天文中心,ul。 Rabia´nska 8, PL-87-100 Toru´n, 波兰 4 鲁汶天主教大学恒星学研究所,Celestijnenlaan 200D,B-3001 Leuven,比利时 5 圣地亚哥州立大学天文系,5500 Campanile Drive,San Diego,CA 92182-1221,美国 6 维拉诺瓦大学天体物理和行星科学系,800 Lancaster Avenue,Villanova,PA 19085,美国 7 哈佛和史密森天体物理中心,60 Garden Street,Cambridge,MA 02138,美国 8 伯明翰大学物理与天文学院,伯明翰 B15 2TT,英国 9 奥胡斯大学物理与天文系恒星天体物理中心 (SAC),Ny Munkegade 120,DK-8000丹麦奥胡斯 C
该化学在空间中的研究被不同地描述为宇宙化学,宇宙化学。由恒星核合成形成的元素可以组合形成不同类型的分子。将旧的,安静的环境信封和行星星云之星,星际介质(ISM)和盘子周围的圆盘置于恒星之间的星际介质。数量密度约为90%氢,9%的氦气和1%的重元素[2]。在电磁谱的不同区域工作,天文学家在较小程度上测量了气体的组成,并在较小程度上测量了灰尘颗粒。气体中的基本丰度符合氢在主导的电线,氦的浓度可能为10%氢气,重要元素碳,氮和氧气氢密度为103-104。有力消除了电线中发现的一些重元素。散射云气体;可能是这些元素(例如硅)是包括灰尘颗粒[3]。与大多数来源一样,天空比碳更基本的氧气。除了进入该行之外,还有几百个未知的吸收线,其中许多比习惯宽。
摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。