操作概念等 参见附录1 研究原型的概要 参见附录2 基本设计结果示例 参见附录3 评估概要 讨论和问题的收集地点 关于本研究原型的设计结果 关于未来的挑战 收到的评论、建议等 将高性能红外摄像机技术确立为国产技术极其重要。特别是在共同的晶体基板上制作具有不同特性的近红外和中红外成像元件的技术被认为是独特且有趣的。研制出在新月条件下也能拍摄夜视图像的成像装置,满足了现代的需求,也获得了高度评价,是一项技术进步。迄今为止,虽然已有近红外传感器的制造报道,但实际应用的报道却很少。因此,开发近红外范围的传感器的目标值得关注。 将来,如果将近红外/中红外双波长组合成一个元件存在很多挑战,包括串扰问题*2,我们相信会考虑使用混合方法,通过考虑近红外和中红外传感器的最佳组合,包括截止波长,为每个传感器使用最高性能的元件。 *2 串扰:使用一个具有两个波长的元件检测光时,两个波长之间的相互影响。 需要采取行动/考虑的事项 无特别事项 摘要 研究进展顺利,我们期待获得满意的结果。
启用无线的Calcivis®成像系统(CISW)旨在由牙科医疗保健专业人员对患者(6岁及6岁)的患者使用,具有与龋齿病变相关的脱矿化的风险,可及可及性冠状牙齿表面。CISW被指示用于提供牙齿表面上主动脱源性的图像,以帮助评估,诊断,监测和治疗计划与龋齿病变相关的脱矿化。CISW由两个主要组成部分组成,它们结合使用,以使牙科实践者能够在牙齿表面上获得主动脱矿化的图像:Calcivis®成像装置和Carcivis®成像套件。Calcivis®成像设备包括一个口腔内相机,码头和相关的软件,允许图像的视频流和静止图像的捕获,以及一种将少量(约25µL)Calcivis®光蛋白应用于牙齿的机制。Calcivis®成像试剂盒的关键成分是Calcivis®光蛋白,其中包含一种非治疗性重组光蛋白,在常规使用中,该光蛋白通常以每颗牙齿的最大20颗牙齿的最大牙齿(例如,所有摩尔和前摩尔的露天表面)以每颗牙齿的最大牙齿进行约3µg应用。Calcivis®成像系统包括:
摘要:组织培养物,尤其是脑器官的分析,进行了高度的协调,测量和监测。我们已经开发了一个自动化的研究平台,使独立设备能够实现以反馈驱动的细胞培养研究实现协作目标。由物联网(IoT)体系结构统一,我们的方法可以在各种感应和驱动设备之间进行连续的,交流的互动,从而实现了对体外生物学实验的准时控制。该框架整合了微流体,电生理学和成像装置,以维持脑皮质器官并监测其神经元活性。类器官是用定制的3D打印室进行培养的,该腔室附着在商业微电极阵列上,用于电生理监测。使用可编程的微流体泵实现周期性喂养。我们开发了抽吸培养基的计算机视觉量估计,达到了高精度,并使用了反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过比较手动和自动化方案的7天研究对系统进行了为期7天的研究。自动化的实验样品在整个实验过程中保持了强大的神经活性,与对照样品相当。自动化系统启用了每小时的电生理记录,该记录揭示了在每天一次的录音中未观察到神经元发射率的巨大时间变化。
对组织培养物,尤其是脑器官的分析需要复杂的整合和协调多种技术以监测和测量。我们已经开发了一个自动化的研究平台,可实现独立设备,以实现以反馈驱动的细胞培养研究的协作目标。我们的方法可以在各种感应和驱动设备之间的物联网(IoT)体系结构中进行连续,交流,非侵入性交互,从而确切地控制了体外生物学实验的时间。框架整合了微流体,电生理学和成像装置,以维持脑皮质器官,同时测量其神经元活性。类器官是用定制的3D打印室进行培养的,并固定在商业微电极阵列上。使用可授权的微流体泵实现周期性喂养。我们开发了一种计算机视觉量估计器,用作反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过一组为7天的小鼠大脑皮层器官进行了验证,比较了手动和自动化方案。在整个实验过程中维持鲁棒的神经活动时,对自动化方案进行了验证。自动化系统启用了7天研究的每小时电子生理记录。通过高频记录揭示了每个样本的中位神经单位射击率都会提高和器官射击率的动态模式。令人惊讶的是,进食不会影响率。此外,在录制过程中进行媒体交换表明对发射率没有急性影响,从而使该自动化平台用于试剂筛查研究。
• CU 博士论文工作 2018 年 8 月至今 直驱发电机比齿轮发电机具有更高的可靠性;但是,它们通常非常大(10MW 涡轮机重达 220 吨)。其中大部分质量是结构支撑材料。通过实施适合增材制造的拓扑优化和晶格结构,发电机重量可减轻多达 50%。此外,通过集成先进的冷却方法,可以显着提高功率密度,从而进一步减轻重量并降低机器成本。我制造了一个定制的 3 kW 发电机来测试各种冷却技术所能实现的最大电流密度,并使用这些数据来支持高功率密度 12 MW 直驱风力涡轮发电机的分析设计。我还研究了增材制造的空气质量和糊料挤出工艺的建模。 • HP Inc 金属 3D 打印实习生 2019 年 5 月 - 2019 年 8 月 在 HP Inc 的第二次实习中,我致力于开发用于现场打印机监控的方法和指标,以改善分层缺陷和各向同性。粉末粘合剂喷射本质上是一个分层过程,这会导致烧结缺陷。我创建了一个 MATLAB 脚本来自动分析烧结横截面以确定定量打印指标 • HP Inc 金属 3D 打印实习生 2018 年 5 月 - 2018 年 8 月 在 HP Inc 工作期间,我开发了一种高速成像装置,以更好地了解 3D 打印过程。我研究了粉末粘合剂喷射应用中的粉末-粘合剂相互作用。金属打印提出了聚合物粉末-粘合剂喷射中未曾见过的独特挑战;因此,我的工作是为了更好地理解这些独特的挑战。 • RIT 硕士论文工作 2016 年 8 月 - 2018 年 5 月 在我的硕士论文中,我使用金属增材制造的微结构来增强池沸腾传热。RIT 与 Vader Systems 合作,获得了第一台液体磁喷射 3D 打印机(现为 Xerox ElemX)。该打印机使用线材将熔融的铝液滴一滴地喷射到构建平台上,以产生高沉积速率和高分辨率。在我的项目中,我使用这项技术构建了新颖的微结构,以利用增材制造实现的气泡设计将池沸腾传热提高多达 7 倍•微流体高级设计项目(HP 赞助)2017 年 8 月 - 2018 年 5 月通过 RIT 进行的多学科项目,我们小组在惠普公司的支持下提出了自己的项目。我们开发了一种方法来创建一种低成本的微流体装置以评估层流的混合。目前,很难混合层流状态(例如生物医学应用所需的层流状态)。通过在 FAB 中的硅晶片上创建集成电阻加热器,并与低成本封装方法接口实现密封,可以创建一个流动混合装置。混合机制来自于实现类似于 HP 专利热喷墨技术的局部亚稳态沸腾。该项目是一个正在进行的研究项目,旨在确定其可行性和影响混合的参数。• NREL 科学本科实验室实习生 2017 年 5 月 - 2017 年 8 月在 NREL 工作期间,我使用有限元分析 (ANSYS) 来确定减轻大型直驱发电机重量的潜力。这可以减少 24% 的质量,同时还可以将径向偏转减少 60%。最佳的添加方法是粉末粘合剂喷射,并使用多喷射打印创建实验模型以证明设计的可打印性。我们的研究产生了两份会议论文集和两项 ASME 论文奖。• 在 IBM 与高级热能效率实验室合作 2016 年 5 月 - 2016 年 8 月在 IBM,我的工作是密封一个实验性的两相测试回路,该回路之前出现泄漏,已停运一年半。这涉及使用与 Matlab 脚本交互的 LabVIEW 数据采集来确定 Swagelok 系统是否长时间保持真空。此外,我与其他实习生和热工程师合作设计了一张流量卡,以模拟主机中的实际压降。然后,这张流量卡被 3D 打印出来并进行测试,以查看它是否对齐
67 Cocid:用于肝炎感染的紧凑型细胞成像装置克里斯托弗·埃文斯(Christopher Evans)1,肯尼斯·法希(Kenneth Fahy)2,Sergey Kapishnikov博士2,3博士,Tiina O'Neill 4,Dimitri Scholz 4,Ass。尼古拉·弗莱彻教授1,4 1兽医科学,爱尔兰大学都柏林大学学院,爱尔兰2号,爱尔兰,生物学与环境科学学院,三个生物学与环境科学学院,都柏林大学,爱尔兰4康威研究所,爱尔兰大学,都柏林,爱尔兰大学,爱尔兰大学135个人类的二级进程。 ,Laura Cortez Rayas 2,Jens von Einem 2,Clarissa Read博士(Villinger)1 1电子显微镜的中央设施,德国ULM University,ULM University,Dermany,Dermany,2个病毒学研究所,ULM大学医学中心,ULM,德国492使用200 Hz Rocs Micracpopy forber forber forber forber forber profre forby roh roh roh hur fore fore forber profr。德国弗雷堡大学的生物和纳米光子学505人类巨细胞病毒Tegument蛋白UL71的超微结构研究及其在二次封闭中的作用BenediktKüß1,Annika Metzner 2,M.Sc. Annika Metzner 2,硕士。 Laura Cortez Rayas 2,Paul Walther博士1,Gregor Neusser博士3,APL。 Christine Kranz博士3,Clarissa博士读1,2,APL。尼古拉·弗莱彻教授1,4 1兽医科学,爱尔兰大学都柏林大学学院,爱尔兰2号,爱尔兰,生物学与环境科学学院,三个生物学与环境科学学院,都柏林大学,爱尔兰4康威研究所,爱尔兰大学,都柏林,爱尔兰大学,爱尔兰大学135个人类的二级进程。 ,Laura Cortez Rayas 2,Jens von Einem 2,Clarissa Read博士(Villinger)1 1电子显微镜的中央设施,德国ULM University,ULM University,Dermany,Dermany,2个病毒学研究所,ULM大学医学中心,ULM,德国492使用200 Hz Rocs Micracpopy forber forber forber forber forber profre forby roh roh roh hur fore fore forber profr。德国弗雷堡大学的生物和纳米光子学505人类巨细胞病毒Tegument蛋白UL71的超微结构研究及其在二次封闭中的作用BenediktKüß1,Annika Metzner 2,M.Sc. Annika Metzner 2,硕士。Laura Cortez Rayas 2,Paul Walther博士1,Gregor Neusser博士3,APL。 Christine Kranz博士3,Clarissa博士读1,2,APL。Laura Cortez Rayas 2,Paul Walther博士1,Gregor Neusser博士3,APL。Christine Kranz博士3,Clarissa博士读1,2,APL。Christine Kranz博士3,Clarissa博士读1,2,APL。Prof. Dr. Jens von Einem 2 1 Central Facility for Electron Microscopy, Ulm University, Ulm, Germany, 2 Institute of Virology, Ulm University Medical Center, Ulm, Germany, 3 Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany 511 Advanced imaging reveals new lipid droplets dynamics in the malaria parasite Plasmodium falciparum Jiwon Lee 1,2,Kai Matuschewski教授3,Giel Van Dooren 2,Alexander G. Maier 2,Assoc。Prof. Melanie Rug 1 1 Centre for Advanced Microscopy, The Australian National University, Canberra, Australia, 2 Research School of Biology, The Australian National University, Canberra, Australia, 3 Molecular Parasitology, Humboldt University, Berlin, Germany 544 Correlative cryo-bioimaging to study coronavirus replication organelles Mr Patrick Phillips 1,2,3 , Prof Philippa Hawes 4 , Prof Maria Harkiolaki 2,Dan Clare博士2,Jonathan Grimes 3,Helena Maier博士1 1 The Pirbright Institute,Woking,英国Woking,英国2钻石光源,迪德科特,英国,牛津大学,牛津大学,牛津大学,牛津大学,英国,4,弗朗西斯·克里克学院,伦敦,英国弗朗西斯·克里克研究所,