角度同步问题旨在从 m 个噪声测量偏移量 θ i ´ θ j mod 2 π 中准确估计(直到恒定的加性相位)一组未知角度 θ 1 , ... , θ n P r 0 , 2 π q 。例如,应用包括传感器网络定位、相位检索和分布式时钟同步。将该问题扩展到异构设置(称为 k 同步)是同时估计 k 组角度,给定每组的噪声观测(组分配未知)。现有的角度同步方法通常在高噪声环境中表现不佳,这在应用中很常见。在本文中,我们利用神经网络解决角度同步问题及其异构扩展,提出了 GNNS YNC,这是一个使用有向图神经网络的理论性端到端可训练框架。此外,还设计了新的损失函数来编码同步目标。在大量数据集上的实验结果表明,GNNSync 在角度同步问题及其扩展的一组全面基线中获得了具有竞争力的、通常更优异的性能,证明了 GNNSync 即使在高噪声水平下也具有鲁棒性。1 引言近年来,组同步问题作为许多计算问题的关键构建块受到了广泛关注。组同步旨在估计一组组元素,给定它们的成对比率 Υ i,j “ gig ´ 1 j 的一小部分潜在噪声测量值。一些应用包括‚在 3D 旋转的群 SO(3) 上:3D 计算机视觉中的旋转平均(Arrigoni & Fusiello,2020;Janco & Bendory,2022)和结构生物学中的分子问题(Cucuringu et al.,2012b); ‚ 在整数 t 0 , 1 , 2 , 3 u 的群 Z 4 上,以模 4 加法作为群运算:解决拼图游戏 (Huroyan et al., 2020);‚ 在群 Z n ,分别为 SO(2) 上:从成对比较中恢复全局排名 (He et al., 2022a; Cucuringu, 2016),以及,‚ 在刚体运动的欧几里得群 Euc p 2 q “ Z 2 ˆ SO(2) ˆ R 2 上:传感器网络定位 (Cucuringu et al., 2012a)。
图 1 白色念珠菌遗传背景对健康宿主适应性有不同的影响。 (a)未感染(仅暴露于大肠杆菌食物源,灰色)或感染不同白色念珠菌菌株(图例中所示)的健康野生型线虫宿主种群的生存曲线。误差线表示±SE。每个处理中分析的宿主数量(n)如表 S1 所示。使用生存曲线的成对比较和 Log-rank(Mantel-Cox)检验来检验统计学显着性。星号表示与未感染对照相比具有统计学显着性(* 表示 p < .05;**** 表示 p < .0001)。具有相同字母的白色念珠菌处理没有显著差异,而具有不同字母的处理在统计学上存在差异。 (b) 宿主谱系生长的箱线图,以 7 天内产生的单个创始宿主的 F1 和 F2 后代的总种群大小表示。方框表示 25 到 75 分位数,平均值表示为一条线。误差线是标准化的数据范围,圆圈表示异常值。未感染对照处理的平均值和 95% 置信区间分别用灰色虚线和阴影灰色方框表示。使用单因素方差分析检验统计显著性。星号表示与未感染对照相比的统计差异(* 表示 p < .05;*** 表示 p < .001)。事后 Dunn 多重比较检验表明,字母相同的白色念珠菌处理没有显著差异,而字母不同的处理有统计学差异。 (c)感染白色念珠菌的宿主成年期第 1-3 天(正常繁殖时间)产生的(d)宿主幼虫总数和宿主幼虫百分比。数据和统计分析与(b)相同。(e)二倍体(dip)和四倍体(tet)白色念珠菌菌株在第 7 天的宿主存活率(彩色符号表示特定的白色念珠菌遗传背景)。使用 Wilcoxon 配对符号秩检验检验统计学意义,并标明 p 值。(f)感染白色念珠菌二倍体和四倍体菌株的宿主的谱系生长、(g)幼虫数量和(h)繁殖时间。数据和统计分析与(e)相同
摘要:(1)背景:SARS-COV-2 T细胞免疫在SARS-COV-2感染和疫苗接种后迅速激活,并且对于控制感染的进展和严重程度至关重要。本研究的目的是比较杂交免疫力(康复和接种疫苗),疫苗接种的幼稚(非曝光)和康复的未疫苗接种的受试者的T细胞对SARS-COV-2的反应水平。(2)方法:我们对从2021年9月至2022年9月在Attica的大型私人医疗中心进行了对成年人的病历收集的数据进行了回顾性描述性分析,以便根据自己的SARS-COV-2 T细胞免疫反应对自己的计划进行检查。他们分为三组:A组:SARS-COV-2康复和接种疫苗的受试者; B组:SARS-COV-2幼稚的接种受试者; C组:SARS-COV-2康复的未接种受试者。通过执行方法论t-spot.covid检验,可以估计针对尖峰(S)和核素(N)结构蛋白的SARS-COV-2 T细胞反应。(3)结果:研究中总共包括530名受试者,252名女性(47.5%)和278名(52.5%)的男性(55.68±17.0年)。Among them, 66 (12.5%) were included in Group A, 284 (53.6%) in Group B and 180 (34.0%) in Group C. Among the three groups, a reaction against S antigen was reported in 58/66 (87.8%) of Group A, 175/284 (61.6%) of Group B and 146/180 (81.1%) of Group C (chi-square, p < 0.001)。在A组的49/66(74.2%)和C组C组的140/180(77.7%)中存在与N抗原的反应(Chi-square,P = 0.841)。S抗原的中值SFC计数为A组A抗原的中位数为24(范围为0-218),第B组为12(范围为0-275),在C组中为18(kruskal -Wallis test,p <0.001; p <0.001;成对比较:A – B组,p <0.001;组p <0.001;组A – c;组A – c,p <0.001; p <0.001; p <0.001;n抗原的中位数为A组为13(范围0-82),C组C(Kruskal – Wallis test,A – C组P = 0.27)的SFCS计数为13(范围0-168)。(4)结论:我们的发现表明,与疫苗诱导的细胞免疫相比,单独或与疫苗接种合并的天然细胞免疫更强,更耐用。
帕金森病的早期和准确鉴别诊断仍然是临床医生面临的重大挑战。近年来,许多研究利用磁共振成像数据结合机器学习和统计分类器成功区分了不同形式的帕金森病。然而,为了尽量减少偏差和伪影驱动的分类,仍存在一些问题和方法问题。在本研究中,我们比较了不同的特征选择方法和不同的磁共振成像模式,并匹配良好的患者组,并严格控制与患者运动相关的数据质量问题。我们的样本来自 69 名健康对照者,以及特发性帕金森病 (n = 35)、进行性核上性麻痹理查森综合征 (n = 52) 和皮层基底节综合征 (n = 36) 患者。参与者接受了标准化 T1 加权和弥散加权磁共振成像。严格的数据质量控制和组匹配将对照组和患者组的数量分别减少到43、32、33 和 26。我们比较了两种不同的特征选择和降维方法:全脑主成分分析和基于解剖感兴趣区域的方法。在这两种情况下,支持向量机都用于构建健康对照组和患者的成对分类的统计模型。使用留二交叉验证方法以及使用不同受试者集的独立验证来估计每个模型的准确度。我们的交叉验证结果表明,与基于感兴趣区域的方法相比,使用主成分分析进行特征提取可提供更高的分类准确度。然而,当使用独立样本进行验证时,两种特征提取方法之间的差异显著缩小,这表明主成分分析方法可能更容易受到交叉验证过度拟合的影响。 T1 加权和扩散磁共振成像数据均可用于成功区分受试者组,在交叉验证分析的所有成对比较中,两种方式均不优于另一种方式。但是,当使用独立验证队列时,从扩散磁共振成像数据获得的特征可显著提高分类准确率。总体而言,我们的结果支持使用统计分类方法对帕金森病进行鉴别诊断。但是,分类准确率可能会受到组大小、年龄、性别和运动伪影的影响。通过适当的控制和样本外交叉验证,包括基于磁共振成像的分类器在内的诊断生物标志物评估可能是临床评估的重要辅助手段。
虽然最近的空间生物学创新推动了对组织组织如何改变疾病的新见解,但以通用且可扩展的方式解释这些数据集仍然是一个挑战。用于发现组织组织中条件特定差异的计算工作流程通常依赖于成对比较或无监督的聚类。在许多情况下,这些方法在计算上是昂贵的,缺乏统计严格,并且对低流行的细胞壁细分市场不敏感,这些细胞壁细分市场仍然高度歧视和预测患者的结果。在这里,我们提出了乳蛋饼 - 一种自动化,可扩展性和统计上健壮的方法,可用于发现在空间区域,纵向样本或临床患者群体中差异富集的细胞壁细分市场。与现有方法相反,乳蛋白蛋白蛋白蛋白蛋白原将局部利基检测与可解释的统计建模相结合,使用图形邻域来检测差异富集的细胞壁细分市场,即使在较低的患病率下也是如此。在人类组织的硅模型和空间蛋白质组学成像中,我们证明了乳蛋饼可以准确地检测出少于20%的患者样品的频率为0.5%的条件特异性细胞壁细分市场,从而超过了下一个最佳方法,该方法需要患者患者的患病率为60%才能进行检测。为了验证我们的方法并了解肿瘤结构如何影响三重阴性乳腺癌(TNBC)的复发风险,我们使用蛋饼全面介绍了多中心的空间蛋白质组学群体中的肿瘤微环境,这些蛋白质组学同类群体由原发性手术切除术组成,由314例患者分析了200万个细胞,分析了500万个患者。我们发现了始终富集在肿瘤微环境的关键区域的细胞壁细分市场,包括肿瘤免疫边界和细胞外基质重塑区域,以及与患者的统计相关的壁细分市场,包括复发状态和复发性无效生存。大多数差异壁ni(74.2%)是针对未复发并形成富含肿瘤和肿瘤细胞单核细胞,巨噬细胞,APC和CD8T细胞的强大互连网络的患者。相比之下,复发的患者的相互作用网络明显稀疏,并且在B细胞,CD68巨噬细胞和中性粒细胞中富集。我们使用两个独立人群验证了这些发现,观察了相似的细胞相互作用和预测能力。总的来说,这些结果表明,生产性抗肿瘤免疫反应的显着,普遍的特征是由与肿瘤和基质细胞的先天和适应性免疫之间的结构参与网络所定义的,而不是由任何特定的细胞群体。,我们已在https://github.com/jranek/quiche中免费提供作为用户友好的开源Python软件包。