摘要:构建训练/测试场地的实用环境对于网络训练和武器系统测试评估至关重要。在军事环境中,应根据军队的特点不断发展网络训练场地。应通过网络安全认证部署具有网络安全能力的武器。最近,每个军队都在建设自己的网络靶场,模拟其战场环境。然而,由于实际战场是一个综合作战环境,所建立的网络靶场并不能反映互联互通的综合战场环境。为了克服这种情况,本文提出了一种配置计划和操作功能,以构建一个反映每个军队特点的多网络靶场。为了测试具有场景编写和操作功能、能够忠实反映现实的多网络靶场,测试了 DDoS 攻击的影响。确保军事系统之间的互操作性是基于真实任务的测试评估的关键。实验结果显示,如果由于恶意代码渗透到军事网络而发生 DDoS 攻击,可能会对确保军事网络中系统之间的消息互操作性产生严重影响。网络靶场建设技术不仅在军队中得到开发,而且在学校教育和企业中也得到开发。所提出的技术可以
1993 年,国会通过了公法 103-160,第 1703 条,建立了联合军种化学和生物防御计划 (CBDP)。CBDP 的使命是提供世界一流的化学和生物防御能力,使美国军队能够在受到化学或生物战剂污染的战场环境中生存并成功完成作战任务 - 从和平时期的应急任务到整个冲突范围内几乎同时发生的两场主要战区战争。在国防部长办公室内一个办公室(国防部长化学和生物防御副助理)的监督下,各个军种在联合军种协议的框架内工作,计划并支持一项强大而协调的计划。本概述文件重点介绍了我们在该计划中的主要工作,总结了 2000 财年的成就以及 2001 财年及以后的目标。国防部向国会提交了一份单独的、更详细的关于化学和生物防御计划的年度报告。
D 5™激光警告系统通过将任何商业或军事靶向激光排放的佩戴通知其佩戴者通知当今战场环境中的安全性和生存能力。两个独特的(每个具有2个传感器)宽带探测器(750 nm至1700 nm)在200 AZ x 120 x 120 EL学位领域中检测激光信号,以及可选的音频,视觉和/或触觉反馈通知佩戴者的佩戴者。激光警告可以通过USB-C轻松地与ATAK或其他设备集成。虚假检测是在保持不到50毫秒的超快速响应时间的同时最小化的。D 5™系统可以在体内任何地方佩戴;通常,在头盔的胸部,背部或侧面。D 5™也可以用作地面机器人或车辆平台顶部的激光警告系统,以及安装在无人机上的底部。
人工智能和自主武器系统的广泛应用预示着军事领域的一场新革命。中国人民解放军目前正在构想一个由人工智能和自主性主导的未来战场环境,称之为“智能战争”。本文根据中华人民共和国作者的文章探讨了解放军的智能战争概念。报告的结论是,中华人民共和国对智能战争的讨论反映了对广泛使用人工智能和自主性在战争中的性质和影响的持续争论。尽管这场争论仍在继续,但可以预期,解放军在探索最合适的作战概念时将采用人工智能和自主性。中华人民共和国对智能战争的讨论表明,美国军方应该开始准备面对通过广泛使用人工智能和自主性而变得更有效率的解放军。
增强现实(Augmented Reality,瑞典语称为增强现实)是一项以某种形式存在了 30 多年的技术。增强现实系统通过视频或透明显示器在我们的现实视野中构建和叠加虚拟对象。尽管其历史悠久,但直到最近才开始在任何有意义的意义上发展,因为它受到处理器和显示技术的严重限制。除了技术限制之外,它还面临用户处理系统输出信息的能力方面的限制。如果信息量超过容量,用户就会过载,这种情况称为信息过载,导致用户难以接受和理解信息。这可以通过练习良好的用户界面设计来解决,这是任何系统的重要组成部分。军方对这项技术非常感兴趣,希望它能让他们更好地了解战场。然而,战场环境可能会非常紧张,这会增加信息过载的风险,并使设计有用的系统更具挑战性。本文旨在将增强现实、信息过载和界面设计的信息收集到一个地方,并将其应用到军事项目中,以研究基于传统指南和原则进行军事用途设计时会出现哪些挑战。
IPB:一种系统的理解战场IPB的系统方法是一个连续的过程,涉及分析特定地理区域中的威胁和环境,以支持员工的估计和军事决策。 它由四个步骤组成,每次进行IPB时都会执行:定义战场环境,描述其效果,评估威胁并确定威胁的行动方案。 在进行操作之前,进行了IPB来确定战场的关键特征,例如地形,天气和后勤基础设施。 G2/S2识别这些特征,并建立了关注领域(AOI)的限制,以集中分析工作。 此步骤有助于集中命令的初始情报收集工作,并确保IPB流程的其余部分集中于重要领域。 G2/S2还确定了当前情报持有物中的空白,并与其他分支机构进行了协调,以开发填补这些空白的建议。 定义战场环境有助于确定需要特定情报的领域,这对于明智的决策至关重要。 IPB是一个连续的过程,涉及对威胁和环境的持续分析和评估。 只要产品在整个任务中得到指挥官的完成并为下一个操作做准备,该过程就必须有效。 智能过程首先确定命令的初始要求,这些要求是由环境和威胁情况塑造的。 这些模型用于决策和定位过程。IPB:一种系统的理解战场IPB的系统方法是一个连续的过程,涉及分析特定地理区域中的威胁和环境,以支持员工的估计和军事决策。它由四个步骤组成,每次进行IPB时都会执行:定义战场环境,描述其效果,评估威胁并确定威胁的行动方案。在进行操作之前,进行了IPB来确定战场的关键特征,例如地形,天气和后勤基础设施。G2/S2识别这些特征,并建立了关注领域(AOI)的限制,以集中分析工作。此步骤有助于集中命令的初始情报收集工作,并确保IPB流程的其余部分集中于重要领域。G2/S2还确定了当前情报持有物中的空白,并与其他分支机构进行了协调,以开发填补这些空白的建议。定义战场环境有助于确定需要特定情报的领域,这对于明智的决策至关重要。IPB是一个连续的过程,涉及对威胁和环境的持续分析和评估。只要产品在整个任务中得到指挥官的完成并为下一个操作做准备,该过程就必须有效。智能过程首先确定命令的初始要求,这些要求是由环境和威胁情况塑造的。这些模型用于决策和定位过程。第2步评估环境对友好和威胁力的影响,考虑到一般能力,地形,天气和地理位置。此评估重点介绍了整体情况,直到在此过程中稍后开发行动方案为止。分析包括对基础设施,人口统计,政治和当地人口的检查,及其对运营的影响。此步骤中的产品可能包括人口状态叠加,天气分析矩阵和集成产品(例如改良的组合障碍覆盖物)。步骤3涉及分析情报控股,以了解威胁通常如何组织战斗并在类似情况下进行操作。G2/S2使用历史数据并开发了威胁模型来描绘威胁的正常行为,通常通过图形模板,矩阵或简单的叙述来描绘。在面对新的或不太知名的威胁时,可能需要同时发展智能数据基础和威胁模型。在步骤4中,通过开发描述威胁可用选项的敌方行动模型,将上一步的结果集成到有意义的结论中。G2/S2还准备事件模板和矩阵,以将情报集的重点集中在识别威胁将执行的过程中。G2/S2无法有效地产生这些模型来预测威胁的行动方案,除非他充分分析了友好任务,并确定了物理限制,并考虑了所有可能影响整个过程中运营的环境特征。战场环境是综合生产过程(IPB)的关键方面,它指导美国陆军各个级别的决策。为了使IPB有效,它必须在前三个步骤中建立坚实的基础,以确保敌方COA模型有效且相关。虽然单位成员可以非正式地应用IPB,如步枪手对地形和天气的考虑所证明的那样,正式IPB需要更详细的分析,并生产有价值的产品,例如地形分析报告和威胁评估。随着单位大小的增加,IPB中所需的细节水平会显着扩展。部门工作人员可以生产诸如气候摘要,详细的威胁分析和COA模型之类的全面产品,而较小的单位只能对敌人的可能行动产生欣赏。G2/S2对命令级IPB负有主要责任,但是每个指挥官和工作人员都必须理解并应用IPB来支持决策。有效的IPB确定了有关战场和威胁的关键事实和假设,并告知员工计划和战争过程。指挥官和参谋长必须考虑环境因素如何影响友好和敌人的行动。为了履行其职责,每个官员都应准备与其功能领域相关的量身定制的IPB产品,例如电子战或工程。它涉及确定假设并分析敌人发展行动方案(COA)的能力。IPB过程包括五个步骤:任务分析,敌方COA,友好的COA,分析和比较COAS,并开发行动方案。IPB的重点转移到物流支持,增强污染策略IPB过程改进了敌方COA模型,告知NBC侦察支持计划的情报准备战场(IPB)过程是军事行动决策过程的至关重要组成部分。每个步骤都建立在上一个步骤上,最终结果是被整合到操作计划或订单中的选定COA。IPB流程是动态且连续的,需要持续适应战场上不断变化的情况。指挥官的初始规划指南为IPB流程设定了阶段,这有助于确定知识中的关键差距并确定情报要求。IPB过程的第一步是任务分析,工作人员评估了有关战场环境的事实,并假设友好和敌军的互动方式。此分析确定了对潜在友好COA的限制,并揭示了隐含的任务。第二步涉及评估敌人的能力和脆弱性,以告知友好的COA开发。在此步骤中开发的敌方COA模型为制定潜在友好的COA提供了基础。在行动阶段的发展过程中,工作人员使用IPB的结果来创建友好的COA,以利用环境和威胁情况提供的机会。分析和比较COAS步骤涉及在一场战斗会议上与敌人的COA进行“战斗”,以评估其有效性。智能估算中传达的IPB产品是此过程的重要元素。最后,在结论阶段,工作人员总结了战场环境对友好和敌方COA的影响,列出了可能的威胁COA,并确定了可剥削的脆弱性。在整个过程中,指挥官和员工都使用决策框架来选择COA并制定实现其实现的操作计划或订单。IPB流程针对潜在的友好COAS IPB流程涉及分析每个潜在的友好COA针对敌方COA模型,以识别支持友好COA的高付费目标(HPTS)。 这是通过战斗会议来实现的,该会议将选定的HVT精制成HPT。 定位过程需要特定的信息要求,指挥官通过在命令COA的每个阶段同步收集工作来计划。 如果需要BDA来支持COA,则收集计划会相应调整。 馆藏经理会在可能的情况下直接将目标智能从收集者到定位单元或相关的FSE进行直接传播。 提供可行的情报,IPB结构分析,使G2/S2能力向指挥官和消防人员提供指挥官执行轮胎支撑计划。 有关对目标过程的全面理解,请咨询FM 6-20-10。 收集管理协调组织和系统的活动,为指挥官提供COA和针对性努力的必要情报。 在IPB期间,指挥官根据任务分析过程中确定的关键差距确定了他的初始情报要求。 IPB在决策中起关键作用。IPB流程针对潜在的友好COAS IPB流程涉及分析每个潜在的友好COA针对敌方COA模型,以识别支持友好COA的高付费目标(HPTS)。这是通过战斗会议来实现的,该会议将选定的HVT精制成HPT。定位过程需要特定的信息要求,指挥官通过在命令COA的每个阶段同步收集工作来计划。如果需要BDA来支持COA,则收集计划会相应调整。馆藏经理会在可能的情况下直接将目标智能从收集者到定位单元或相关的FSE进行直接传播。提供可行的情报,IPB结构分析,使G2/S2能力向指挥官和消防人员提供指挥官执行轮胎支撑计划。有关对目标过程的全面理解,请咨询FM 6-20-10。收集管理协调组织和系统的活动,为指挥官提供COA和针对性努力的必要情报。在IPB期间,指挥官根据任务分析过程中确定的关键差距确定了他的初始情报要求。IPB在决策中起关键作用。员工战斗通过模拟敌方COA并确定每个决定所需的特定情报来完善这些要求。选择了友好的COA时,指挥官批准并优先考虑支持情报要求。IPB通过确定哪些活动满足每个要求以及预期发生的时间/时间来支持进一步的需求开发。事件模板查明NAI位置,而事件矩阵描述了相关的指示器和发生时间。这些工具构成了有效的情报收集计划的基础。此外,IPB有助于员工同步工具开发,例如DSTS和BOS同步矩阵(图1-4)。由此产生的ISM(图1-5)说明了COA支持的收集策略。有效的智能同步超出了单纯的系统操作;它涉及指导情报系统,处理信息,产生有价值的情报并及时传播它以支持指挥官决策。FM 34-2提供了有关智能同步和收集管理的详细讨论。IPB将G2/S2配备了用于快速评估传入信息和有效定位工作的工具。与命令的集成系统模型(ISM)和数据驱动策略(DST)有关,这有助于执行持续操作(COA)期间指挥官的决定,并实现迅速验证或否定COA开发过程中使用的假设。在参与期间,指挥官和员工监视DST和ISM反对即将到来的报告。当他们接近每个决策点(DP)时,他们会咨询G2/S2以支持情报以告知该决定。偶尔,这场战斗可能会以最初的计划,简报和游戏(IPB)和战争制定的意外方向发展。对手正在遵循他自己的时间表;因此,员工必须利用IPB,战争和智能同步作为动态工具而不是单一事件。随着行动的进展和敌人的意图,请根据需要重新启动IPB和决策过程。这需要关键工作人员从事“迷你沃格梅”或“ huddling”,以审查和完善初始的IPB。G2/S2然后进行战争制定,以根据最新的IPB预测确定最佳的友好响应或先发制人的措施。新的决策和COA会导致更新和完善收集计划,智能同步和新的决策支持工具。集成计划是智能周期的重要组成部分。IPB产品至关重要,因为它们会极大地影响员工计划工作。G2/S2利用IPB产品来处理系统智能系统(ISO)的大量信息。这些产品还使员工通过聚焦收集系统来利用现代ISO技术来利用现代的ISOS技术,从而提供了直接定位的近实时准确性。指挥官监督IPB的工作,而全体员工执行了这项工作。MI单位指挥官支持其命令的IPB,但也支持其在其控制下的ISOS资产来满足独特的计划要求。
按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操
人工智能 (AI) 已经以各种方式影响着 21 世纪的生活。随着机器和技术现在表现出像真人一样“思考”、预测和做出决策的能力,许多任务都被委托给各个行业的人工智能系统和技术。美国空军也不例外。截至 2023 年 12 月,空军有 44 个活跃的人工智能项目,包括先进战斗管理系统 (ABMS),该系统有助于促进作战行动的决策过程。1 人工智能对空军和整个美国军队都有合法的目的:保持对世界主要对手的优势,并确保国家为未来的冲突做好准备。人工智能有许多能力无疑将帮助美国实现这些目标;然而,也有一些缺点和局限性需要考虑。本文的目的是讨论人工智能及其将如何影响美国空军——它的核心任务、作战理论以及作战指挥官可能面临的挑战。人工智能对核心任务的影响 士兵结构描述了空军的六项核心任务:空中优势、情报、监视和侦察 (ISR)、快速全球机动、全球打击以及指挥和控制。 2 人工智能能够以各种方式增强这些核心任务。 AFDP 3-01《制空》将空中优势定义为“一支部队对空中的控制程度,允许其在特定时间和地点开展行动,而不会受到空中和导弹威胁的干扰。” 3 简而言之,空中优势是指空军执行任务的能力;这并不一定意味着对手无法开展自己的行动。 从理论上讲,随着人工智能成为空军行动的重要组成部分,空中优势将变得更简单、更快速地实现。 传统的人类对空中资产的控制与人工智能系统的结合将为作战指挥官在塑造空中战场环境时提供更大的灵活性。此外,人工智能系统将使指挥官能够确保空中优势,而无需让太多空军人员陷入危险境地。五角大楼已经实施了一项名为“复制器”的具体计划,以实现这些目标。4 据国防部副部长称