AMC 20-26 附录 1 术语表 ...................................................................................................... 403 AMC 20-26 附录 2 培训和机组人员资格问题 ........................................................................ 406 AMC 20-26 RNP 运行注意事项 ........................................................................ 412 AMC 20-26 附录 4 RNP 飞行技术误差评估的可接受方法 ............................................................................................................. 417 AMC 20-26 附录 5 飞行运行安全评估 ............................................................................................. 421 附录 6 AMC 20-26/PBN 手册/AC90-101 比较 ............................................................................. 424
添加每个组中的正反应数量,可以获得5位数字代码,通过使用代码簿(无VP数据库),可以像以下示例一样识别正在检查的微生物。识别旁边的星号(*)表示存在稀有生物。如果稀有生物是最佳选择,请检查分离物的纯度并重复接种。同样,如果遇到了罕见的生物作为第一个选择,并且还列出了共同的微生物,则必须进行确定测试。这些稀有分离株发生的频率是如此之低(通常每年少一次),以至于在报告结果之前,应排除技术误差,例如混合或轻型接种物。
缩写列表 ABAS 机载增强系统 ACAS 飞机防撞系统 ADS 自动相关监视 ADS-C 自动相关监视 - 合同 AFM 飞机飞行手册 ANP 实际导航性能 ATC 空中交通管制 ATM 空中交通管理 B-RNAV 基本区域导航(欧洲标准) B-RNP 1 基本所需导航性能 1 海里(美国标准) CDI 航向偏差指示器 CDU 控制显示单元 CPDLC 管制员-飞行员数据链通信 CSA 标准精度信道 DCA 阿鲁巴民航部 DME 测距设备 EASA 欧洲航空安全局 ECAC 欧洲民航会议 (E)HIS(电子)水平状况指示器 EUR 欧洲地区(ICAO) FAA 联邦航空管理局 FAF 最后进近定位点 FDE 故障检测与排除(GNSS) FL 飞行高度 FMS 飞行管理系统 FRT 固定半径过渡 FT 英尺 FTE 飞行技术误差 GBAS 地基增强系统 GNSS全球导航卫星系统 GPS 全球定位系统 GRAS 地基区域增强系统 IAF 初始进近定位点 ICAO 国际民用航空组织 IF 中间定位点 INS 惯性导航系统 IRS 惯性参考系统 JAA 联合航空当局 LNAV 横向导航模式 (FMS) LoA 接受函 LOA 批准书 (由 DCA 颁发) LOFT 航线导向飞行训练 LORAN 远程导航 (低频
摘要:在强度不断增加的运动过程中,人体会根据实际需求通过不同的机制转换能量。人体的能量利用可分为三个阶段,每个阶段的特点是不同的代谢过程,并由两个阈值点分隔,即有氧阈值 (AerT) 和无氧阈值 (AnT)。这些阈值在确定的运动强度 (工作量) 值时发生,并且会因人而异。它们被视为运动能力的指标,可用于个性化体育活动计划。它们通常通过通气或代谢变量检测,需要昂贵的设备和侵入性测量。最近,人们特别关注 AerT,这是一个特别适用于超重和肥胖人群的参数,可用于确定减肥和增强体质的最佳运动强度。本研究旨在提出一种新程序,使用复发分析 (RQA) 自动识别 AerT,该程序仅依赖心率时间序列,该时间序列是从一群年轻运动员在自行车功率计上进行亚最大增量运动测试 (心肺运动测试, CPET) 期间获得的。我们发现,确定性最小值(根据时期复发量化 (RQE) 方法计算出的 RQA 特征)可识别发生一般代谢转变的时间点。在这些转变中,基于确定性最小值的最大凸度的标准可以检测到第一个代谢阈值。普通最小积回归分析表明,RQA 估计的与 AerT 相对应的耗氧量 VO 2 、心率 (HR) 和工作量的值与 CPET 估计的值高度相关 (r > 0.64)。 HR 和 VO2 的平均百分比差异均小于 2%,工作负荷的平均百分比差异小于 11%。AerT 时 HR 的技术误差小于 8%;AerT 时所有变量的组内相关系数值均适中(≥ 0.66)。因此,该系统是一种仅依靠心率时间序列检测 AerT 的有用方法,一旦针对不同活动进行了验证,将来就可以轻松应用于从便携式心率监测器获取数据的应用中。
高的问题,在全面进入 2D 数字屏幕界面阶段后,飞 机座舱只有少数的传统机械仪表被保留,大部分的飞 行信息数据都由计算机分析后再在主飞行显示器 ( PFD )上显示出来,这种获取信息的方式大大增强 了飞行员驾驶的安全性。平视显示器( HUD )是飞机 座舱人机交互界面的另一种形式。 HUD 可以减少飞 行技术误差,在低能见度、复杂地形条件下向飞行员 提供正确的飞行指引信息。随着集成化和显示器技术 的不断进步, 20 世纪末至今,飞机座舱有着进一步 融合显示器、实现全数字化界面的趋势。例如,我国 自主研发生产的 ARJ21 支线客机、 C919 民航客机, 其座舱的人机界面设计均采用触控数字界面技术代 替了大部分的机械仪表按钮 [2] 。 20 世纪 70 年代,美军在主战机上装备了头盔显 示系统( HMDs ),引发了空中战争领域的技术革命。 在虚拟成像技术成熟后,利用增强现实( AR )技术 可以直接将经过计算机运算处理过的数据和图象投 射到驾驶员头盔的面罩上。例如,美国 F-35 战斗机 的飞行员头盔使用了虚拟成像技术,将计算机模拟的 数字化信息数据与现实环境无缝融合,具有实时显示 和信息叠加功能,突破了空间和时间的限制。 20 世纪 90 年代,美国麦道飞机公司提出了“大 图像”智能化全景座舱设计理念,之后美国空军研 究实验室又提出了超级全景座舱显示( SPCD )的概 念,充分调用飞行员的视觉、听觉和触觉,利用头 盔显示器或其他大屏幕显示器、交互语音控制系统、 AR/VR/ MR 系统、手 / 眼 / 头跟踪电子组件、飞行员 状态监测系统等,把飞行员置身于多维度的显示与 控制环境中。此外,在空间三维信息外加上预测信 息的时间维度功能也是未来座舱显示器的发展趋势 [3] 。 2020 年,英国宇航系统公司发布了一款第六代 战斗机的概念座舱,去除了驾驶舱中所有的控制操 作仪器,完全依靠头盔以 AR 形式将操作界面显示 出来。由上述分析可知,未来基于 XR 环境下的虚拟 增强型人机界面将成为飞机座舱人机交互的全新途 径之一。 在学术界,有关飞机座舱人机交互界面的研究也 取得了较为丰硕的成果,其中代表性研究成果见表 1 。