无人机摄影测量考古调查质量评估 S. Barba a , M. Barbarella b , A.Di Benedetto c , M. Fiani a , M. Limongiello a a 意大利菲夏诺 (SA) 萨勒诺大学土木工程系 (sbarba; m.fiani; mlimongiello)@unisa.it; b 意大利博洛尼亚大学土木、化学、环境和材料工程系 - ARCES maurizio.barbarella@unibo.it c 意大利罗马第三大学土木工程系 alessandro.dibenedetto@uniroma3.it 委员会 II 关键词:重投影误差、阿维拉露天剧场、3D 模型、GNSS 测量。摘要:本文报告了使用无人机 (UAV) 在阿韦利亚 (意大利阿韦利诺) 的罗马圆形剧场考古遗址进行的摄影测量调查的结果。本研究的目的是验证哪种图像采集方式(如果只有底部图像或底部加倾斜图像)与全球定位卫星系统 (GNSS) 测量地面控制点 (GCP) 的方法相结合能够在精度方面生成更好的 3D 模型,以便提取适合所需表示比例(1:100 和 1:50)的传统图形绘图(平面图、立面图和剖面图)。通过分析 GCP 上的残留物来评估地理参考的准确性;随后,对最终 3D 模型的精度进行了更详细的分析,分析了图像坐标上的残差,也称为重新投影误差。所开发的方法基于对不同模型的统计分析,这些模型是通过改变 GCP 的测量方法和获取的摄影测量照片而建立的。1.介绍我们的分析结果表明,仅使用天底图像进行摄影测量更“稳定”,并且 nRTK 技术可以实现与静态测量相当的结果,无论是精度还是可靠性。此外,如果在 nRTK 模式下测量 GCP,考虑到图形误差,最大表示比例为 1:100,而使用静态技术可以以 1:50 的比例描述主要细节。
受监控的量子电路可以实现前所未有的多体纠缠动态控制。在这里,我们展示了随机的、仅测量的电路,实现了 Kitaev 蜂窝模型的键和斑块耦合的竞争,产生了具有次级 L ln L 液体缩放行为的结构化体积定律纠缠相。这种相互作用的马约拉纳液体在改变相对耦合概率时获得的纠缠相图中占据高度对称的球形参数空间。球体本身是一个临界边界,量子 Lifshitz 缩放将体积定律相与近似面积定律相、颜色代码或环面代码区分开来。一个例外是一组三临界自对偶点,它们表现出有效的 (1 + 1)d 共形缩放,体积定律相和两个面积定律相在此相交。从量子信息的角度来看,我们的结果定义了在存在投影误差和随机综合征测量的情况下颜色代码的误差阈值。
在许多应用程序中,我们需要生成一个序列长度比原始视频模型支持的长度更长的视频。为了实现这一目标,我们首先将长视频分为长度L的重叠块,在连续的块之间具有一个框架重叠,并以自动回归方式顺序生成每个块的框架。具体来说,对于第一个块,我们遵循Sec中描述的推理管道。主纸的4.5预测RGB视频。 然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。 要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。 具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。 我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。 我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。 然后将优化目标定义为:主纸的4.5预测RGB视频。然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。然后将优化目标定义为:
摘要 — 为了实现长期自主导航中稳健、无漂移的姿态估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的方法,该方法是基于紧耦合非线性优化的估计器。与以前的松散耦合研究不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来制定惯性残差,并利用这种算法的结果来有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合融合方法。与室外无人机 (UAV) 飞行中的松耦合方法相比,平均位置误差降低了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是第一项在基于优化的视觉惯性里程计算法中紧密融合全局位置测量的工作,利用 IMU 预积分方法定义全局位置因子。
摘要 — 为了实现长期自主导航中稳健、无漂移的位姿估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的紧耦合非线性优化估计器。与以前的松散耦合的工作不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来计算惯性残差,并利用该算法的结果有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,而优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合的融合方法。与室外无人机 (UAV) 飞行中的松散耦合方法相比,平均位置误差减少了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是首次在基于优化的视觉惯性里程计算法中紧密融合全局位置测量,利用 IMU 预积分方法定义全局位置因子。
事件传感器提供高时间分辨率的视觉感应,这使其非常适合感知快速视觉效果,而不会遭受运动模糊的困扰。机器人技术和基于视觉的导航中的某些应用需要3D感知在静态相机前进行圆形或旋转的物体,例如恢复对象的速度和形状。设置等于用轨道摄像头观察静态对象。在本文中,我们提出了基于事件的结构 - 轨道(ESFO),其目的是同时重建从静态事件摄像头观察到的快速旋转对象的3D结构,并恢复相机的等效轨道运动。我们的贡献是三重的:由于最新的事件特征跟踪器无法处理由于旋转运动而导致的定期自我遮挡,因此我们根据时空聚类和数据关联开发了一种新颖的事件特征跟踪器,可以更好地跟踪事件数据中有效特征的螺旋螺旋传播。然后将特征轨道馈送到我们的新颖因素基于图形的结构后端端,该结构从后端进行计算轨道运动插曲(例如自旋速率,相对旋转轴),从而最大程度地减少了重新投影误差。进行评估,我们在旋转运动下生成了一个新事件数据集。比较与地面真理表示ESFO的功效。