抽象的药物组合和药物重新利用已成为开发新型传染病治疗的有前途的策略,包括chagas疾病。在这项研究中,我们旨在调查已知的氯氨酸(CQ)和秋水仙碱(COL)(已知抑制宿主细胞中的锥虫感染)是否可以促进锥虫的抗t. cruzi效应,从而增加锥虫药物苯并二唑(BZN)的抗tripanocipidal curzi效应(BZN),并提高其均可提高其eR含量,并提高其固定性的效果。寄生虫。BZN和COL的结合表现出对感染细胞和低抗寄生虫活性的细胞毒性。相反,BZN和CQ显着降低了Cruzi感染的结合,没有明显的细胞毒性。这种效果在不同的细胞系中似乎是一致的,并且与部分耐BZN的Y和高度抗BZN的colombiana菌株相吻合。在急性鼠模型中的体内实验表明,BZN 1 CQ组合在急性相中降低Cruzi感染的有效性比BZN单位高八倍。总而言之,我们的结果表明,CQ和BZN的伴随施用增强了BZN的锥虫活性,从而减少了实现有效反应所需的剂量。在翻译环境中,它可以表现出更高的治疗效率,同时还可以减轻高剂量BZN的不利影响。我们的研究还增强了柴cas病药物发现领域中药物组合和重新利用方法的相关性。
除蜱麻痹外,由于症状重叠,临床上难以区分;可能出现病原体组内的交叉反应和持续性 IgM。通常包括:莱姆病、疟疾、细菌性或病毒性脑膜炎、其他罕见蜱传病原体、伤寒。治疗对于落基山斑疹热 (RMSF),及时诊断和治疗(使用强力霉素)对于预防严重疾病至关重要。蜱麻痹可通过去除蜱虫来治疗。其他可用抗生素治疗(与抗寄生虫药物联合治疗巴贝斯虫病)。持续时间因病原体而异。暴露媒介:蜱虫。除了通过输血或器官捐赠传播的巴贝斯虫病和边虫病外,不会在人与人之间传播。实验室检测当地卫生管辖区 (LHJ) 和传染病流行病学 (CDE) 可以
抗精神病药品对正性症状的改善是有效果的,(5,6](6] ;传统抗精神病药品(即第一代药品)(6] ;传统抗精神病药品(即第一代药品)被认为是被认为是被认为是被认为是d2接受器,多巴胺能神经转移),包括氯丙氨酸perphenzine、氯丙嗪fluphenazine、 fluphenazine fluphenazine fluphenazine fluphenazine fluphenazine fluphenazine floperidol phaloperidol pimozide pimozide fimozide,ZuciClopEntentEntectentEndeclopEntentectEns、zuclopEntentEntectEntEns、 ((EPS)(EPS)反而困扰病人,parkinsonian症状)(甲状腺肿)(甲状腺肿)(tardive dardive Edkinesia)(Akathisia)[4] [4] ;非)atripiprazole,氨基酸氨基唑,丙二氮,
参考文献1。Hahn BH。 抗DNA的抗体。 n Engl J Med。 1998; 338:1359-1368。 2。 tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。 1982年修订的全身性红斑狼疮分类的标准。 节炎。 1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Hahn BH。抗DNA的抗体。n Engl J Med。1998; 338:1359-1368。 2。 tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。 1982年修订的全身性红斑狼疮分类的标准。 节炎。 1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1998; 338:1359-1368。2。tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。1982年修订的全身性红斑狼疮分类的标准。节炎。1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1982; 25:1271-1277。3。Egner W.在SLE的诊断中使用实验室测试。J Clin Pathol。2000; 53:424-432。4。Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。J immunol。1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1982; 128:73-78。5。Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。抗DSDNA:与临床价值相关的测定方法。风湿性int。1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1991; 11:101-107。6。Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Ann Rheum Dis。1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1985; 44:245-251。7。Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Peng SL,Craft Je。抗核抗体。in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。Elsevier:2017; 817-830。8。Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。临床和实验性风湿病学。2015; 33(2):217-224。2015; 33(2):217-224。9。Damoiseaux JG,Tervaert JWC,Froment Dr,Van Venrooij WJ,Hillen HFP。抗双链DNA(DSDNA)抗体的诊断值与结缔组织疾病中其他实验室参数有关。风湿性疾病的年鉴。2002; 61(5):474-476。 10。 Neogi T,Gladman DD,Ibanez D,Urowitz M. Farr和Elisa Techniques进行的抗DSDNA抗体测试是不相等的。 j风湿病。 2006年9月; 33(9):1785-1788。2002; 61(5):474-476。10。Neogi T,Gladman DD,Ibanez D,Urowitz M. Farr和Elisa Techniques进行的抗DSDNA抗体测试是不相等的。j风湿病。2006年9月; 33(9):1785-1788。
Globulifera Symphonia globulifera代谢组概况的比较研究:LC-HRMS/MS数据集成和RMN删除13C作为搜索新的抗虫剂
深入探索基因编辑的革命性世界,特别关注原生动物克氏锥虫,即查加斯病的病原体。这次关键会议旨在让来自拉丁美洲国家的学生掌握最新基因编辑技术的尖端知识和技能,包括突破性的 CRISPR-Cas9 系统。将有机会进行海报展示并与外国专家交流。主题包括:
2 启示 3 4 5 Evgeny S. Gerasimov a# 、 Dmitry A. Afonin a# 、 Oksana A. Korzhavina a 、 Julius Lukeš b,c 、 Ross Low d 、 Neil Hall d 、 6 Kevin Tyler e 、 Vyacheslav Yurchenko f * 、 Sara L. Zimmer g * 7 8 9 a 分子生物学系,罗蒙诺索夫莫斯科国立大学,莫斯科 119234,俄罗斯 10 jalgard@gmail.com (ESG)、afoninmsu@outlook.com (DAA)、korzhavina.oksana.bio.msu@gmail.com 11 (OAK) 12 13 b 寄生虫学研究所,生物中心,捷克科学院,370 05 捷克布杰约维采,捷克14 jula@paru.cas.cz (JL) 15 16 c 南波西米亚大学科学学院,370 05 捷克布杰约维采,捷克 17 18 d 厄尔汉姆研究所,诺维奇研究园区,诺维奇 NR4 7UZ,英国 19 Ross.Low@earlham.ac.uk(RL),neil.hall@earlham.ac.uk(NH) 20 21 e 诺维奇医学院,东英吉利亚大学,诺维奇 NR4 7TJ,英国 22 K.Tyler@uea.ac.uk(KT) 23 24 f 生命科学研究中心,俄斯特拉发大学科学学院,710 00 俄斯特拉发,捷克 25 vyacheslav.yurchenko@osu.cz(VY) 26 27 g 明尼苏达大学医学院,德卢斯校区,明尼苏达州德卢斯,55812,美国 28 szimmer3@d.umn.edu (SLZ) 29 30 # 平等贡献 31 * 通信地址 32 33
动基体是单细胞鞭毛虫,其名称来源于“动基体”,这是单个线粒体内的一个区域,其中包含高 DNA 含量的细胞器基因组,称为动基体 (k) DNA。这种线粒体基因组的一些蛋白质产物被编码为隐基因;它们的转录本需要编辑才能生成开放阅读框。这是通过 RNA 编辑实现的,其中小调控向导 (g)RNA 指导在特定转录本区域内的每个编辑位点正确插入和删除一个或多个尿苷。很难准确了解动基体中 kDNA 的扩展及其独特的尿苷插入/删除编辑的进化。在这里,我们解析了早期分支动基体锥虫中的 kDNA 结构和编辑模式,并将它们与研究较为深入的锥虫进行比较。我们发现它的 kDNA 由约 42 kb 的环状分子组成,这些分子包含 rRNA 和蛋白质编码基因,以及 17 个不同的约 70 kb 的重叠群,每个重叠群平均携带 23 个假定的 gRNA 位点。这些重叠群可能是线性分子,因为它们包含重复的末端。我们的分析发现了一个具有独特长度和序列参数的假定 gRNA 群体,相对于这种寄生虫的编辑需求而言,这个群体是巨大的。我们验证或确定了四个编辑的 mRNA 的序列身份,包括一个编码 ATP 合酶 6 的 mRNA,该 mRNA 之前被认为缺失。我们利用计算方法表明,T. borreli 转录组包含大量具有不一致编辑模式的转录本,显然是非规范编辑的产物。与其他研究的动基体相比,该物种利用了最广泛的尿苷缺失来加强隐基因产物的氨基酸保守性,尽管插入仍然更频繁。最后,在三个经过测试的动质体线粒体转录组中,原始线粒体读段中尿苷缺失比与完全编辑的、具有翻译能力的 mRNA 对齐更常见。我们得出结论,kDNA 在已知动质体中的组织代表了编码 mRNA 和 rRNA 的环状分子的分区编码和重复区域的变异,而 gRNA 基因座位于高度不稳定的分子群中,这些分子在不同菌株之间的相对丰度存在差异。同样,虽然所有动质体都具有保守的机制来执行尿苷插入/缺失类型的 RNA 编辑,但其输出参数是物种特异性的。2022 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creative-commons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
在糖组学研究所,我们开发了一种新型全寄生虫疫苗平台技术,最初是在 Michael Good AO 教授的领导下为疟疾开发的。我们的疟疾疫苗技术有两种形式:1) 化学减毒全寄生虫候选疫苗;2) 新型全寄生虫脂质体候选疫苗。
Andrade,S。G。Caracterizaçãodecepas de trypanosoma cruzi cruzi Iseladas norecôncavoBaiano。 Revista de Patologia热带。 卷。 3,p。 65-121。 1974。 Andrade,S.G。; Magalhães,J.B。锥虫菌株的生物植物和扎伊米亚:与临床数据和实验病理学的相关性。 Revista da Sociedade Brasileira de Medicina Tropical。 卷。 30,p。 27-35。 1997。 Andrade,V。; Brodskyn,c。 Andrade,S.G。 同工酶模式与克鲁氏锥虫菌株的生物bahaviour之间的相关性。 皇家热带医学和卫生学会的交易。 卷。 76,p。 796-799。 1983。 Avila,I。I.等。 通过分析PCR的分析 - 放大微圆的可变区域序列,对来自南部和中部América的Cruzi菌群的精神分裂质分析。 分子和生化寄生虫学。 卷。 42,p.175 - 188。 1990。 Britto,C。等。 一种简单的方案,用于血液样本中存在于血样中的锥虫动力学DNA的物理裂解,以及在聚合酶链反应(PCR)中使用的ITSM-基于慢性Chagas疾病的诊断。 memóriasdo Instituto Oswaldo Cruz。 。 v。88,p。 171-172.1993。 Britto,C等。 聚合酶链链反应检测人类血液样本中锥虫的锥虫瘤作为诊断和治疗评估的工具。 寄生虫学。 卷。 110,p。 241-247.1995。 ______。 等。 卷。 卷。Andrade,S。G。Caracterizaçãodecepas de trypanosoma cruzi cruzi Iseladas norecôncavoBaiano。Revista de Patologia热带。卷。3,p。 65-121。1974。Andrade,S.G。; Magalhães,J.B。锥虫菌株的生物植物和扎伊米亚:与临床数据和实验病理学的相关性。 Revista da Sociedade Brasileira de Medicina Tropical。 卷。 30,p。 27-35。 1997。 Andrade,V。; Brodskyn,c。 Andrade,S.G。 同工酶模式与克鲁氏锥虫菌株的生物bahaviour之间的相关性。 皇家热带医学和卫生学会的交易。 卷。 76,p。 796-799。 1983。 Avila,I。I.等。 通过分析PCR的分析 - 放大微圆的可变区域序列,对来自南部和中部América的Cruzi菌群的精神分裂质分析。 分子和生化寄生虫学。 卷。 42,p.175 - 188。 1990。 Britto,C。等。 一种简单的方案,用于血液样本中存在于血样中的锥虫动力学DNA的物理裂解,以及在聚合酶链反应(PCR)中使用的ITSM-基于慢性Chagas疾病的诊断。 memóriasdo Instituto Oswaldo Cruz。 。 v。88,p。 171-172.1993。 Britto,C等。 聚合酶链链反应检测人类血液样本中锥虫的锥虫瘤作为诊断和治疗评估的工具。 寄生虫学。 卷。 110,p。 241-247.1995。 ______。 等。 卷。 卷。Andrade,S.G。; Magalhães,J.B。锥虫菌株的生物植物和扎伊米亚:与临床数据和实验病理学的相关性。Revista da Sociedade Brasileira de Medicina Tropical。卷。30,p。 27-35。1997。Andrade,V。; Brodskyn,c。 Andrade,S.G。 同工酶模式与克鲁氏锥虫菌株的生物bahaviour之间的相关性。 皇家热带医学和卫生学会的交易。 卷。 76,p。 796-799。 1983。 Avila,I。I.等。 通过分析PCR的分析 - 放大微圆的可变区域序列,对来自南部和中部América的Cruzi菌群的精神分裂质分析。 分子和生化寄生虫学。 卷。 42,p.175 - 188。 1990。 Britto,C。等。 一种简单的方案,用于血液样本中存在于血样中的锥虫动力学DNA的物理裂解,以及在聚合酶链反应(PCR)中使用的ITSM-基于慢性Chagas疾病的诊断。 memóriasdo Instituto Oswaldo Cruz。 。 v。88,p。 171-172.1993。 Britto,C等。 聚合酶链链反应检测人类血液样本中锥虫的锥虫瘤作为诊断和治疗评估的工具。 寄生虫学。 卷。 110,p。 241-247.1995。 ______。 等。 卷。 卷。Andrade,V。; Brodskyn,c。 Andrade,S.G。同工酶模式与克鲁氏锥虫菌株的生物bahaviour之间的相关性。皇家热带医学和卫生学会的交易。卷。76,p。 796-799。1983。Avila,I。I.等。通过分析PCR的分析 - 放大微圆的可变区域序列,对来自南部和中部América的Cruzi菌群的精神分裂质分析。分子和生化寄生虫学。卷。42,p.175 - 188。1990。Britto,C。等。一种简单的方案,用于血液样本中存在于血样中的锥虫动力学DNA的物理裂解,以及在聚合酶链反应(PCR)中使用的ITSM-基于慢性Chagas疾病的诊断。memóriasdo Instituto Oswaldo Cruz。。v。88,p。 171-172.1993。 Britto,C等。 聚合酶链链反应检测人类血液样本中锥虫的锥虫瘤作为诊断和治疗评估的工具。 寄生虫学。 卷。 110,p。 241-247.1995。 ______。 等。 卷。 卷。v。88,p。 171-172.1993。Britto,C等。聚合酶链链反应检测人类血液样本中锥虫的锥虫瘤作为诊断和治疗评估的工具。寄生虫学。卷。110,p。 241-247.1995。 ______。 等。 卷。 卷。110,p。 241-247.1995。______。等。卷。卷。聚合酶链反应检测:对慢性chagas病的诊断的新见解。memóriasdo Instituto Oswaldo Cruz。94,p。 305-306.1999。______。等。o。被Xenodiongensis和聚合酶链反应MemóriosDo Instituto Oswaldo Cruz揭示的经过治疗的chagasic患者的寄生虫持久性。v。96,2001。p。 1-4。 Clark,C。G.核糖增生:原生动物分类法的分子方法。 in:Lee,J.J。 &Soldo,A.T。 (ed。 ):原子学方面的协议。 Allen Press。 1992。 Clark,C.G。 ; Martin,D.S。 ; Diamond,L.S。 ruboprinting揭示的Anuran锥虫之间的系统发育关系。 真核微生物学杂志。 42,p。 92-96。 1999。 Lana,M。; Tafuri,W。L.锥虫Cruzi adoençade Chagas。 in:Neves,D。P。; Melo,A。L。; Genaro,A。&Linardi,P。M(编辑。 ):人类寄生虫; ed。 雅典。 2002。v。96,2001。p。 1-4。Clark,C。G.核糖增生:原生动物分类法的分子方法。in:Lee,J.J。 &Soldo,A.T。(ed。):原子学方面的协议。Allen Press。 1992。 Clark,C.G。 ; Martin,D.S。 ; Diamond,L.S。 ruboprinting揭示的Anuran锥虫之间的系统发育关系。 真核微生物学杂志。 42,p。 92-96。 1999。 Lana,M。; Tafuri,W。L.锥虫Cruzi adoençade Chagas。 in:Neves,D。P。; Melo,A。L。; Genaro,A。&Linardi,P。M(编辑。 ):人类寄生虫; ed。 雅典。 2002。Allen Press。1992。Clark,C.G。 ; Martin,D.S。 ; Diamond,L.S。 ruboprinting揭示的Anuran锥虫之间的系统发育关系。 真核微生物学杂志。 42,p。 92-96。 1999。 Lana,M。; Tafuri,W。L.锥虫Cruzi adoençade Chagas。 in:Neves,D。P。; Melo,A。L。; Genaro,A。&Linardi,P。M(编辑。 ):人类寄生虫; ed。 雅典。 2002。Clark,C.G。; Martin,D.S。; Diamond,L.S。ruboprinting揭示的Anuran锥虫之间的系统发育关系。真核微生物学杂志。42,p。 92-96。 1999。 Lana,M。; Tafuri,W。L.锥虫Cruzi adoençade Chagas。 in:Neves,D。P。; Melo,A。L。; Genaro,A。&Linardi,P。M(编辑。 ):人类寄生虫; ed。 雅典。 2002。42,p。 92-96。1999。Lana,M。; Tafuri,W。L.锥虫Cruzi adoençade Chagas。 in:Neves,D。P。; Melo,A。L。; Genaro,A。&Linardi,P。M(编辑。 ):人类寄生虫; ed。 雅典。 2002。Lana,M。; Tafuri,W。L.锥虫Cruzi adoençade Chagas。in:Neves,D。P。; Melo,A。L。; Genaro,A。&Linardi,P。M(编辑。):人类寄生虫; ed。雅典。2002。