光子元面积,包括称为元原子的一系列纳米结构,提供了一种在特定波长下操纵光的新型方法。通过在基材上进行工程学的几何形状和功能排列,跨度可以用高精度操纵光波[1]。这种精确的控制使Metasurfaces非常适合各种应用,包括折射率感应。在各种领域(例如环境监测,食品安全检查,生物医学诊断,化学工业等)中,折射率感测至关重要[2]。由于低损失,低成本,较低的线宽度,高Q因子,介电元时间偏向于感测的突出[3]。在这里,我们在这项工作中提出了一个基于介电元面的折射率传感器。通过数值模拟研究了传感器的性能。获得的传输光谱在1μm至1.7μm的波长范围内描绘了双共振。这种双重共振的存在在传感器技术方面具有显着优势,因为它为监视变化提供了多种选择。此外,这种双重响应也增强了传感器的稳定性。通过研究了元原子中的圆柱插槽,并研究了其灵敏度的提高,从而进一步修改了传感器设计。
结果表明,结构无序(以各向异性、皮级原子位移的形式)会调节折射率张量,并导致在准一维六方硫族化物 BaTiS 3 中观察到巨大的光学各向异性。单晶 X 射线衍射研究表明,沿 c 轴相邻 TiS 6 链内存在 Ti 原子的反极性位移,以及 a – b 平面上的三重退化 Ti 位移。47/49 Ti 固态 NMR 为这些 Ti 位移提供了额外的证据,这些 Ti 位移呈三角 NMR 线形,是由 Ti 原子周围低对称性局部环境引起的。扫描透射电子显微镜用于直接观察全局无序的 Ti a–b 平面位移,并发现它们在几个晶胞上局部有序。第一性原理计算表明,Ti a – b 平面位移选择性地降低了沿 ab 平面的折射率,而对沿链方向的折射率影响最小,从而导致光学各向异性大幅增强。通过展示具有皮尺度位移的结构无序与 BaTiS 3 中的光学响应之间的紧密联系,本研究为设计具有高折射率和大光学各向异性和非线性等功能的光学材料开辟了一条途径。
适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in
模式分割的多路复用技术与几种模式ERBIUM掺杂纤维放大器(FM-EDFA)相结合,显示出解决标准单模光纤(SSMF)传输系统的容量限制的重要潜力。但是,在FM-EDFA中产生的差异模式增益(DMG)从根本上限制了其传输能力和长度。在此,提出了使用飞秒激光微加工来调整折射率(RI)的创新DMG均衡策略。可变模式依赖性衰减可以根据FM-EDFA的DMG曲线来实现,从而实现DMG均衡。为了验证提出的策略,研究了常用FM-EDFA配置的DMG均衡。模拟结果表明,通过优化飞秒激光尾区域的长度和RI调节深度,在3个线性偏振(LP)模式组中,最大DMG(DMG MAX)在10 dB中降低了10 dB,而平均DMG(dmg ave)的平均dmg(dmg ave)。最后,实验证明了一个2-LP模式DMG均衡器,导致DMG最大最大从2.09 dB减少到0.46 dB,并且在C频带上将DMG AVE从1.64 dB降低到0.26 db,仅插入插入率为1.8 db。此外,使用5.4 dB实现了最大可变DMG均衡范围,满足了最常用的2-LP模式扩增方案的要求。
我们建议使用基于光纤的干涉仪搜索标量超轻暗物质(UDM),其颗粒质量在10 - 17-17-10-10 - 13-11 eV = C2ð10-3-3 - 10 Hz。由固体芯和空心芯纤维组成,该提出的检测器将对纤维折射率的相对振荡敏感,这是由于标量UDM诱导的调节型在细胞结构常数α中的调制。我们预测,通过实施检测器阵列或低温冷却,提出的基于光纤的标量UDM搜索有可能达到参数空间的新区域。这种搜索特别适合探测暗物质的太阳光晕,其灵敏度超过了先前的暗物质搜索在粒子质量范围7×10-17-17-2×10-14 eV = C 2上。
在光纤中基于KERR非线性的四波混合(FWM)过程已被证明可以在过去二十年中启用许多全光信号处理设备,例如波长转换器[1,2],光相结合器[3-5] [3-5]和相位敏感的放大器[6,7]。这些全光学系统可能会成为未来高容量波长多路复用(WDM)网络的重要组成部分,这要归功于它们在超宽带宽和延迟较低的情况下运行的潜力。有多种通常用于FWM的非线性介质,包括硅[8-10]硝酸硅[11-15]和半导体光学放大器(SOAS)[16-19],对于全光信号处理应用来说是有希望的。值得注意的是,硅和SOA在适当地进行工程时表现出了它们在执行极化信号处理操作[20-22]方面的潜力。由于其低耦合损耗(当剪接时)和低传播损失,光纤(尤其是高度非线性纤维(HNLF)[23,24]的低耦合损耗(当时)[23,24],分散较低)仍然是一种流行的培养基。在许多FWM过程中,需要非生物的纤维。但是,实际上,现实世界中的纤维样品通常将具有一些小的残留双折射,导致它们被描述为“低折双发性”纤维。此类纤维[23]已知在核心直径中表现出随机的纵向变化,进而导致纵向变化的双折射。纵向变化的双折射随机使输入信号的极化状态随机,使基于FWM的设备对极化更敏感,这可能对需要极化的强度敏感的应用特别有害[25]。众所周知,即使是从相同的纤维线轴捕获的样品的纤维双发性分布也不同于样品之间,这使得给定系统的确切行为降低了基于纤维的FWM技术的可预测性,更复杂的商业化。
结果:我们的发现表明,在初次疫苗接种后第3至6个月之间,抗尖峰IgG滴度的迅速减弱(血浆和唾液分别减少了1.7倍和2.5倍; p <0.0001)。相反,在此期间,峰值记忆B细胞的频率增加(增加2.4倍; P <0.0001),而尖峰特异性CD4+和CD8+ T细胞的频率在所有评估的功能中保持稳定:细胞毒性,IFN G,IL-2,IL-2和TNF A表达。促进疫苗接种显着改善了血浆和唾液中的抗体反应,并且在中和能力中观察到的最深刻的变化针对当前循环的Omicron变体(增加了25.6倍; P <0.0001)。对于峰值IgG+记忆B细胞(增加2.4倍; P <0.0001)和细胞毒性CD4+和CD8+ T细胞反应(分别增加1.7-和1.9倍; P <0.05),增强疫苗接种的积极作用也很明显。
图 6. 球体的加权噪声 LSP(SNR = 3)与模拟 LSP 的比较。后者的特性是通过谱法和非线性回归获得的,并在图例中呈现。谱方法的 MSE 和 log(MSE) 分别为 0.493 和 −0.307 ,而回归方法的 MSE 和 log(MSE) 分别为 0.198 和 −0.703 。
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
金柱勋 1 、成俊华 1 、金元中 2 、李建艺 3 、金洪允 1 、文成元 1 、张在赫 4 、金艺瑟 1 、杨英焕 1 、吴东乔 1 、灿雄