目标和产品 本指南文件介绍了在高可靠性应用中使用先进塑料球栅阵列 (BGA) 和芯片尺寸 BGA (DSBGA) — 商用现货 (COTS) — 封装技术和组件的建议。最先进和高密度的 BGA 采用倒装芯片球栅阵列 (FCBGA) 配置,输入/输出 (I/O) 超过 2000 个,间距为 1 毫米。间距小于 1 毫米(低至 0.3 毫米)的 DSBGA 通常最多有几百个 I/O。由于更大芯片的产量挑战和节点缩小的高成本,业界已转向实施系统级封装 (SiP)。先进的 SiP 集成芯片技术(称为 Chiplet)是电子封装技术的下一个范式转变。本指南简要讨论了先进的 COTS 封装技术趋势,并提供了两个测试评估示例;一个针对 BGA,另一个针对 DSBGA。对于这两个类别,测试结果涵盖了关键工艺问题、质量指标和质量保证 (QA) 控制参数,随后提供了全面的测试数据以解决热循环可靠性和局限性。最后,报告摘要中包括了从这些评估中吸取的经验教训得出的关键建议。针对低风险灌注航天应用,给出了 COTS BGA/DSBGA 封装技术的具体建议,同时考虑了任务、环境、应用和寿命 (MEAL) 要求。
1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;liyongliang@ime.ac.cn(YL);zhouna@ime.ac.cn(NZ);xiongwenjuan@ime.ac.cn(WX);zhangqingzhu@ime.ac.cn(QZ);duanyan@ime.ac.cn(AD);gaojianfeng@ime.ac.cn(JG);kongzhenzhen@ime.ac.cn(ZK);linhongxiao@ime.ac.cn(HL);xiangjinjuan@ime.ac.cn(JX);lichen2017@ime.ac.cn(CL);yinxiaogen@ime.ac.cn(XY);wangxiaolei@ime.ac.cn(XW);yanghong@ime.ac.cn(HY);maxueli@ime.ac.cn(XM); hanjianghao@ime.ac.cn (JH); tyang@ime.ac.cn (TY); lijunfeng@ime.ac.cn (JL); yinhuaxiang@ime.ac.cn (HY); zhuhuilong@ime.ac.cn (HZ); luojun@ime.ac.cn (JL); rad@ime.ac.cn (HHR) 2 中国科学院大学微电子研究所,北京 100049 3 北京有色金属研究总院智能传感新材料国家重点实验室,北京 100088 4 北方工业大学电子信息工程学院,北京 100144;zhangj@ncut.edu.cn (JZ); tairanhu1@gmail.com (TH); chrisaigakki@gmail.com (ZC) 5 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典 * 通讯地址:lijunjie@ime.ac.cn (JL);wangguilei@ime.ac.cn (GW);wangwenwu@ime.ac.cn (WW);电话:+ 86-010-8299-5508 (WW)
摘要 本文介绍了一种高增益运算跨导放大器结构。为了实现具有改进的频率响应的低压操作,在输入端使用体驱动准浮栅 MOSFET。此外,为了实现高增益,在输出端使用改进的自共源共栅结构。与传统的自共源共栅相比,所用的改进的自共源共栅结构提供了更高的跨导,这有助于显著提高放大器的增益。改进是通过使用准浮栅晶体管实现的,这有助于缩放阈值,从而增加线性模式晶体管的漏极-源极电压,从而使其变为饱和状态。这种模式变化提高了自共源共栅 MOSFET 的有效跨导。与传统放大器相比,所提出的运算跨导放大器的直流增益提高了 30dB,单位增益带宽也增加了 6 倍。用于放大器设计的 MOS 模型采用 0.18µm CMOS 技术,电源为 0.5V。
摘要:如今,放大器是一种功率增益更大的器件。它是现代电子器件的基础,广泛应用于几乎所有电子设备。共源共栅放大器是各种有用电路的关键元件。它具有带宽增加、转换速率高、增益高、输入阻抗适中和输出阻抗较高的优点。循环折叠共源共栅放大器 (RFCA) 的参数比传统折叠放大器 [1] 有所改进。这是通过使用信号路径中空闲设备的先前电路来实现的,从而提高了跨导、增益和转换速率 [1]。共源共栅级由共栅极和共源极端子组成。互补折叠共源共栅放大器 (CFCA) 是镜像配置电路,可节省功率并具有更高的稳定点。转换速率允许最大频率高于范围,从而消除任何潜在错误和不需要的信号。转换速率高于 6.3V/µs 的电路似乎最常用。单位增益带宽可用来放大信号,更宽的带宽可以消除较小的信号。关键词:循环折叠共源共栅 (RFC)、互补折叠共源共栅 (CFC)、折叠共源共栅放大器 (FCA)。
摘要 陶瓷柱栅阵列封装由于其高互连密度、极好的热性能和电性能、与标准表面贴装封装装配工艺兼容等优点,其应用日益广泛。CCGA 封装用于逻辑和微处理器功能、电信、飞行航空电子设备和有效载荷电子设备等空间应用。由于这些封装的焊点应力消除往往比引线封装少,因此 CCGA 封装的可靠性对于短期和长期空间任务非常重要。对聚酰亚胺 CCGA 互连电子封装印刷线路板 (PWB) 进行了组装、无损检查,然后进行极端温度热循环,以评估其在未来深空、短期和长期极端温度任务中的可靠性。在本次调查中,采用的温度范围涵盖 185 C 至 +125 C 极端热环境。测试硬件由两个 CCGA717 封装组成,每个封装分为四个菊花链部分,总共需要监控八个菊花链。CCGA717 封装的尺寸为 33 毫米 x 33 毫米,具有 27 x 27 个 80%/20% Pb/Sn 柱阵列,间距为 1.27 毫米。菊花链 CCGA 互连的电阻作为热循环的函数进行连续监控。报告了电阻测量结果作为热循环的函数,迄今为止的测试表明,菊花链电阻随着热循环发生了显著变化。随着热循环次数的增加,互连电阻的变化变得更加明显。本文将介绍极端温度下 CCGA 测试的实验结果。使用标准威布尔分析工具提取威布尔参数以了解 CCGA 故障。光学检测结果清楚地表明,柱状元件与电路板和陶瓷封装的焊点在热循环过程中发生故障。第一次故障发生在第 137 次热循环中,63.2% 的菊花链故障发生在约 664 次热循环中。从威布尔图中提取的形状参数约为 1.47,这表明故障与标准浴盆曲线的平坦区域或使用寿命区域内发生的故障有关。基于此实验测试数据,可以使用 CCGA 进行 100 次热循环所研究的温度范围
摘要 — 激光超声检测是一种新颖的、非接触的、非破坏性的技术,用于评估微电子封装中焊料互连的质量。在该技术中,通过比较已知良好参考样本和被测样本的平面外位移信号(该信号由超声波传播产生)来识别焊料互连中的缺陷或故障。实验室规模的双光纤阵列激光超声检测系统已成功证明可以识别先进微电子封装(如芯片级封装、塑料球栅阵列封装和倒装芯片球栅阵列封装)中焊料互连中的缺陷和故障。然而,任何计量系统的成功都依赖于精确的数据,以便在微电子行业中发挥作用。本文使用量具重复性和再现性分析证明了双光纤阵列激光超声检测系统的测量能力。工业倒装芯片球栅阵列封装已用于使用激光超声检测系统进行实验,检测数据用于进行重复性和再现性分析。量具重复性和再现性研究也已用于选择已知的良好参考样品来与受试样品进行比较。
绝缘栅双极晶体管 (IGBT) 电源模块是常用于切换高电压和电流的设备。使用和环境条件可能会导致这些电源模块随着时间的推移而性能下降,而这一渐进过程最终可能导致设备发生灾难性故障。这一性能下降过程可能会导致一些与电源模块健康状况相关的早期性能症状,从而可以检测出 IGBT 模块的可靠性下降。测试可用于加速这一过程,从而可以快速确定是否可以表征设备可靠性的特定下降。在本研究中,同时对多个电源模块进行热循环,以评估热循环对电源模块性能下降的影响。使用高温热电偶从每个电源模块内部进行现场温度监测。执行设备成像和特性分析以及温度数据分析,以评估电源模块内的故障模式和机制。虽然实验旨在评估热循环对芯片连接的潜在损坏影响,但结果表明引线键合性能下降是限制寿命的故障机制。
摘要 本文研究了一种具有可变增益控制的 60 GHz 低功耗宽带低噪声放大器 (LNA)。为了证明这一概念,该电路采用 22 nm 全耗尽绝缘体上硅 (FD-SOI) CMOS 技术实现。它通过增益峰值(增益分配)技术支持 60 GHz 的宽带操作。通过调整放大器的一些关键匹配网络,每级的峰值增益被分配到不同的频率,从而产生整体宽带频率响应。该电路由三个级联共源共栅放大器级组成。匹配网络针对带宽和噪声系数进行了优化。晶体管背栅用于 LNA 设计,以将电路切换到低功耗待机模式。这避免了基于前栅的切换在电压击穿和电路稳定性方面的问题。此外,通过背栅实现了在如此高频率下同时实现可变增益控制。与基于前栅的相比,基于背栅的可变增益控制可以实现增益的连续微调,同时对控制电压的精度或分辨率要求较低。在测量中,增益通过背栅成功从 20 dB 调低至 − 25 dB。在 1 V 标称电源的 8.1 mW 直流功率下,LNA 提供 20 dB 的峰值增益、18.5 GHz 的带宽和 3.3 dB 的最小噪声系数。当偏置在 0.4 V 的降低直流电源下时,所给出的电路仅消耗 2.5 mW 的直流功率,并且仍然提供 10 dB 的功率增益和约 4.5 dB 的最小噪声系数。通过切换到待机模式,LNA 在标称电源下消耗 850 µ W 的直流功率,在降低电源下消耗 240 µ W 的直流功率。与之前报告的设计相比,LNA 表现出色,具有最低的噪声系数以及具有竞争力的增益、带宽和直流功率。据作者所知,这是第一款通过单独的背栅偏置具有联合可变增益控制和切换功能的 60 GHz LNA。
电子和通信等各个领域对高性能折叠共源共栅 CMOS OTA 的需求日益增长,要求它们具有宽带宽、高电压增益、紧凑设备和低功耗的特点。最近的研究表明,实施水循环算法 (WCA) 可以大大提高折叠共源共栅 CMOS 运算跨导放大器 (OTA) 的性能。这是因为 WCA 能够有效地执行全局搜索和局部探索。值得注意的是,所讨论的 OTA 采用 0.18µm TSMC 技术构建,工作电压为 ±1.8V。模拟结果是使用 PSPICE 软件 (版本 17.4) 收集的。这些设计解决方案表现出卓越的效率,可提供显着的放大、高频率和最低功耗。此外,本文还利用水循环算法演示了折叠共源共栅 CMOS 运算跨导放大器的实现和仿真结果,为此使用了 MATLAB。在折叠共源共栅 CMOS OTA 的 OTA 设计中使用 WCA 可显著提高性能指标。与无算法设计相比,电压增益显著增加,增益带宽增加了五倍。此外,与非 WCA 折叠共源共栅 CMOS OTA 设计相比,功耗降低了 15.5%,共模抑制比提高了 15.18%。结果突出了 WCA 技术作为一种强大的优化策略的有效性,可以提高折叠共源共栅 CMOS OTA 的性能。
倒装芯片式集成电路的热管理通常依赖于通过陶瓷封装和高铅焊料栅格阵列引线进入印刷线路板的热传导作为散热的主要途径。这种封装配置的热分析需要准确表征有时几何形状复杂的封装到电路板的接口。鉴于六西格玛柱栅阵列 (CGA) 互连的独特结构,使用详细的有限元子模型从数字上推导出有效热导率,并与传统 CGA 互连进行比较。一旦获得有效热导率值,整个互连层就可以表示为虚拟的长方体层,以纳入更传统的“闭式”热阻计算。这种方法为封装设计师提供了一种快速而可靠的方法来评估初始热设计研究权衡。