h 2 O 2在水溶液中的浓度已通过532 nm拉曼态度来确定。h 2 O 2是一种高需求的绿色氧化剂,其H 2和O 2的直接合成是传统生产过程的有前途的替代方法。拉曼光谱是针对H 2 O 2量化的快速,无损和可靠的分析技术,它避免了传统的碘测定的缺点(样品提取,制备了试剂的制备和长时间的分析)。已经设计了一个高压视图单元,以促进高压下的测量,通常在直接合成过程中发现。已经开发了一个彻底的校准模型,并在高压(5.0 MPa)和温度(最高45℃)的情况下进行了阀门。溶剂(水)用作纠正乘法扭曲的内标。分析技术的验证与经典碘化滴定相比产生了可重现和准确的结果,从而使单个校准模型用于一系列反应条件。通过在不同条件下分析H 2 O 2的分解反应,已建立了拉曼光谱对实时定量反应监测的可行使用。©2010 Elsevier B.V.保留所有权利。
摘要:我们在拓扑绝缘子(TI)BI 4 TE 3上合成和光谱研究了单层C 60。此C 60 /BI 4 TE 3异质结构的特征是在BI 4 TE 3的A(9×9)细胞(9×9)细胞上的小说(4×4)C 60上层结构中出色的翻译顺序。C 60 /BI 4 TE 3的角度分辨光发射光谱(ARPE)表明,ML C 60在室温下接受Ti的电子,但在低温下没有电荷转移。通过拉曼光谱,光致发光(PL)和C 60 /BI 4 TE 3的计算进一步研究了这种依赖温度的掺杂。在低温下,拉曼光谱和PL显示C 60相关信号的强度急剧增加,这表明过渡到旋转有序状态。计算解释了C 60吸附到BI 4 TE 3表面缺陷的电荷转移。电荷转移的温度依赖性归因于C 60的方向顺序。由于旋转运动的冻结,C 60的电子亲和力在低温下增加。关键字:拓扑绝缘子,富勒烯,角度分辨光发射,拉曼,光致发光
摘要:范德华磁性材料最近被发现,引起了材料科学和自旋电子学的极大关注。制备原子厚度的超薄磁性层具有挑战性,而且大多是通过机械剥离来实现的。在这里,我们报告了磁性范德华 NiI 2 晶体的气相沉积。在厚度为 5 − 40 nm 的 SiO 2 /Si 衬底上和六方氮化硼(h-BN)上生长出单层厚度的二维(2D)NiI 2 薄片。温度相关的拉曼光谱揭示了原生 2D NiI 2 晶体中直至三层的稳健磁相变。电测量显示 NiI 2 薄片具有半导体传输行为,开/关比高达 10 6。最后,密度泛函理论计算显示 2D NiI 2 中存在层内铁磁和层间反铁磁有序。这项工作为外延二维磁性过渡金属卤化物提供了一种可行的方法,也为自旋电子器件提供了原子级薄材料。关键词:二维磁体、范德华材料、气相沉积、拉曼光谱、相变 A
摘要。拉曼光谱对分子水平上物质化学成分的高灵敏度使其成为通过分析血清诊断慢性心力衰竭(CHF)的宝贵工具。拉曼光谱法提供了一种无标签,快速检测方法,与机器学习(ML)技术结合使用时具有高度特异性和准确的结果。但是,必须仔细选择适当的ML算法,以分析高维光谱数据,以获得可靠和正确的结果,这些结果主要基于所研究的样品,标本或结构的真实化学特征以及并非所有算法都可以提供高性能。在这项研究中,我们比较了四种方法:(1)多变量曲线分辨率与逻辑回归(MCR-LR)结合使用,(2)与线性内核支持向量机(MCR-SVM),(3)在潜在结构上的投影与歧视分析(PLS-DA)的投射(4)投影(4) (PLS-SVM)。这些方法适用于CHF患者的193例拉曼光谱,对照病例的78例。我们发现,PLS-DA和PLS-SVM证明了最佳的ROC AUC,平均值为0.950(0.91-0.97,0.95 CI)和0.99(0.94 - 1.00,0.95 CI),而MCR-LR和MCR-SVM仅实现了0.50(0.46- 0.53-0.95 CI),以及0.53,0.95 CI),并实现CI),分别。©2024生物医学光子学与工程杂志。
对产生相应的(z)-n' - (((1H-indol-3- yl)甲基甲基甲基甲基甲基)的相应的(z)-n' - (CH)的反应。 CH和CHN抑制剂的抑制效率分别分别减轻体重减轻,而CH和CHN抑制剂的抑制效率分别为约86.9%,CH和CHN抑制剂的抑制效率分别为降低的抑制剂,而CHN抑制剂的极化耐极能力高于CHN抑制剂的较高限制,而CHN抑制剂的浓度降低了,则在较大的情况下降低了COROSIT的差异。对于CH和CHN抑制剂,K ADS分别为11.4824 m -1和6.8667 m -1。吸附的自由能(∆ g o ads。)为-12.1685 kJ mol -1,CHN抑制剂为-14.7326 kJ mol -1。这表明CH和CHN抑制剂都被物理吸附到低碳钢表面上,而CHN则优先吸附。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。
摘要:我们通过使用依赖偏振的超频率拉曼光谱的纯3R和2H堆叠顺序研究了MOS 2中的层间剪切和呼吸声子模式。我们在MOS 2中最多观察到三层剪切分支和四个呼吸分支,厚度为2至13层。呼吸模式显示出两种多型型的拉曼活性行为,但是2H呼吸频率始终比3R呼吸频率高几个波数,这表明2H MOS 2的层间层间层间lattice晶格偶尔略高于3R MOS 2。相比之下,剪切模式拉曼光谱在2H和3R MOS 2中截然不同。虽然最强的剪切模式对应于2H结构中的最高频率分支,但它对应于3R结构中的最低频率分支。3R和2H多型的如此独特和互补的拉曼光谱使我们能够从最高到最低分支中调查MOS 2中的广泛剪切模式。通过结合线性链模型,群体理论,有效的键极化模型和第一原理计算,我们可以考虑实验中的所有主要观察结果。
目的:应用于癌症治疗的纳米技术是纳米医学研究的一个越来越多的研究领域,具有磁性纳米粒子介导的抗癌药物输送系统,提供了最小可能的副作用。到此,使用无标记的共聚焦拉曼光谱研究了商业钴金属纳米颗粒的结构和化学性质。材料和方法:通过XRD和TEM研究了钴纳米颗粒的晶体结构和形态。用鱿鱼和PPM研究了磁性特性。共聚焦拉曼显微镜具有高空间分辨率和组成灵敏度。它是一种无标记的工具,可在细胞内追踪纳米颗粒,并研究无涂层的钴金属纳米颗粒与癌细胞之间的相互作用。通过MTT测定法评估了钴纳米颗粒对人类细胞的毒性。结果:MCF7和HCT116癌细胞和DPSC间充质干细胞的超paragnetic CO金属纳米颗粒摄取通过共聚焦拉曼显微镜研究。拉曼纳米颗粒特征还可以准确检测细胞内的纳米颗粒而无需标记。观察到钴纳米颗粒的快速吸收,然后观察到快速凋亡。通过针对人类胚胎肾脏(HEK)细胞的MTT测定法评估其低细胞毒性,使它们成为有望发展目标疗法的候选者。结论:无标签的共聚焦拉曼光谱可以准确地将CO金属纳米颗粒定位在细胞环境中。此外,在20MW的激光照射下,波长为532nm,可以使局部加热导致细胞内钴金属纳米颗粒的燃烧,从而为癌症光疗法开放新的途径。研究了无表面活性剂钴金属纳米颗粒与癌细胞之间的相互作用。癌细胞中易于的内吞作用表明,这些纳米颗粒在产生其凋亡方面具有潜力。这项初步研究证明了钴纳米材料在纳米医学中应用的可行性和相关性,例如光疗,高温或干细胞递送。关键字:拉曼光谱,钴纳米颗粒,癌细胞,干细胞,细胞摄取,凋亡,无标签工具
目的:应用于癌症治疗的纳米技术是纳米医学研究的一个越来越多的研究领域,具有磁性纳米粒子介导的抗癌药物输送系统,提供了最小可能的副作用。到此,使用无标记的共聚焦拉曼光谱研究了商业钴金属纳米颗粒的结构和化学性质。材料和方法:通过XRD和TEM研究了钴纳米颗粒的晶体结构和形态。用鱿鱼和PPM研究了磁性特性。共聚焦拉曼显微镜具有高空间分辨率和组成灵敏度。它是一种无标记的工具,可在细胞内追踪纳米颗粒,并研究无涂层的钴金属纳米颗粒与癌细胞之间的相互作用。通过MTT测定法评估了钴纳米颗粒对人类细胞的毒性。结果:MCF7和HCT116癌细胞和DPSC间充质干细胞的超paragnetic CO金属纳米颗粒摄取通过共聚焦拉曼显微镜研究。拉曼纳米颗粒特征还可以准确检测细胞内的纳米颗粒而无需标记。观察到钴纳米颗粒的快速吸收,然后观察到快速凋亡。通过针对人类胚胎肾脏(HEK)细胞的MTT测定法评估其低细胞毒性,使它们成为有望发展目标疗法的候选者。结论:无标签的共聚焦拉曼光谱可以准确地将CO金属纳米颗粒定位在细胞环境中。此外,在20MW的激光照射下,波长为532nm,可以使局部加热导致细胞内钴金属纳米颗粒的燃烧,从而为癌症光疗法开放新的途径。研究了无表面活性剂钴金属纳米颗粒与癌细胞之间的相互作用。癌细胞中易于的内吞作用表明,这些纳米颗粒在产生其凋亡方面具有潜力。这项初步研究证明了钴纳米材料在纳米医学中应用的可行性和相关性,例如光疗,高温或干细胞递送。关键字:拉曼光谱,钴纳米颗粒,癌细胞,干细胞,细胞摄取,凋亡,无标签工具
萨拉哈丁大学理学院物理系,伊拉克Erbil 44001。doi:https://doi.org/10.47011/17.5.5.9接收到:07/06/2023;接受:20/09/2023摘要:在这项研究中,使用TICL 4作为泰坦尼亚前体的水热技术,在氟掺杂的氧化锡(FTO)底物上生长了良好的金红石TIO TIO 2纳米棒阵列。检查了水热反应(生长)时间对纳米结构制备过程中纳米结构形状和大小变化的影响。研究使用各种分析技术(例如X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),拉曼光谱和UV-Vis-vissible分光光度计)研究了制备的TIO 2纳米棒的特性。通过在优化的生长温度,前体浓度和酸度等优化生长因子(例如生长温度,前体的浓度和酸度)上改变水热反应时间,从而获得了TIO 2纳米棒的不同结构,形态和光条间隙。组成仍然是金红石,尽管纳米棒的粒径和平均直径随生长时间变化。观察到吸收边缘转移到更长的波长(红移),并且随着生长时间的增加,TIO2的预测带隙减小。此外,通过拉曼光谱分析确认金红石相。