将输入信号连接到MOSAIQ6,并在几秒钟内自动捕获信号。设备首先搜索标准,然后搜索所有标准的参数。不再需要显示与信号相关的标准和信号参数与仪表相关的参数。使用Mosaiq6,这与连接RF电缆一样容易;仪表会自动检测到标准(DVB-T/T2,DVB-C,QAM-B,ISDB-T,用于陆地带,以及用于卫星带,IPTV等的DVB-S/S2/S2X)以及与该特定标准相关的所有参数。
摘要 - 数据科学在生物医学和生理时间序列和空间图的分析中的使用允许提取有关生物体整体和单个器官的动态状态和功能的可靠信息。在本文中,基于记忆函数形式主义,这是统计物理学的方法之一,我们分析了人脑和人类神经肌肉系统的生物电活动的信号。我们从对人类信号中揭示的全球模式的研究进行过渡到对时间动态各个部分的分析。基于局部特征和参数(功率谱和统计记忆度量的时间窗口绘图),我们建立了周期性模式和动态模式相关性的变化。在时间序列分析的情况下,各种定位过程扮演着“统计显微镜”的作用,该过程捕获信号详细信息或反映对象的局部结构的特征。在记忆功能形式主义框架内引入的广义和局部参数被证明可用于寻找心脏病学,神经生理学,流行病学以及研究人类感觉运动和运动活性的诊断标准。
本文提出了一种基于脑电图的大脑语言信号分类的更好解决方案,它使用机器学习和优化算法。该项目旨在通过实现更高的准确性和速度来取代语言处理任务中的脑信号分类。本研究使用改进的离散小波变换 (DWT) 进行特征提取,通过将脑电图信号分解为显著的频率分量,提高了适当捕获信号特征的能力。应用灰狼优化 (GWO) 算法方法来改进结果并选择最佳特征,通过选择具有最大相关性的有影响力的特征同时最小化冗余,获得更准确的结果。这种优化过程总体上提高了分类模型的性能。在分类的情况下,提出了支持向量机 (SVM) 和神经网络 (NN) 混合模型。这结合了 SVM 分类器在高维空间中管理函数的能力,以及神经网络利用其特征进行非线性学习(模式学习)的能力。该模型在脑电图数据集上进行了训练和测试,分类准确率为 97%,表明我们的方法的稳健性和有效性。结果表明,这种改进的分类器可用于脑机接口系统和神经系统评估。机器学习和优化技术的结合已确立了这一范式,成为进一步研究脑语言识别脑电信号处理的一种高效方法。
抽象的机器学习一直在赋予系统设计各个方面的无线通信能力,其中基于加固的方法(RL)方法可以直接与环境互动,并有效地从收集的经验中学习,从而引起了很多研究的关注。在本文中,我们提出了一种新颖且有效的基于RL的多光束组合方案,用于未来毫米波(MMWAVE)三维(3D)多输入多输入 - 多数输出(MIMO)通信系统。所提出的方案不需要完美的渠道状态信息(CSI)或通常在实践中很难获得的精确用户位置,并且很好地解决了由多用户,多路径和多孔通信系统的极为巨大状态和动作空间产生的计算复杂性的关键挑战。尤其是,提出了一个自我发项的深层确定性策略梯度(DDPG)的束选择和组合框架,以自适应地学习没有CSI的3D光束成型模式。我们旨在通过优化每个用户的服务束集和相应的组合权重来最大化MMWAVE 3D-MIMO系统的总和。为此,利用基于变压器的自我发项DDPG来获得输入元素的全局信息,并精确地捕获信号方向,从而实现了最佳的光束形式设计。仿真结果验证了所提出的自我发项DDPG的优越性,而不是在各种情况下的总和率方面的基于AI的光束成型方案。
在标准信号处理中,采样理论指出,以高于奈奎斯特速率采样的带限信号可以完美重建。这一重要特性是欧几里得信号采样的基石。然而,当信号定义在更复杂的域上时,自适应采样策略的设计仍然是一个活跃的热门话题。为了处理位于不规则域上的信号,图信号处理 (GSP) [1, 2] 已成为标准方法的有力替代方案。在这种形式化中,图定义了一个支持,信号(现在称为图信号)在此支持上定义。这允许捕获信号演变的结构,从而提供比单独考虑信号更多的信息。通过将信号处理的概念和工具推广到图上记录的信号,GSP 已证明其在滤波 [3]、重构 [4] 和采样 [5] 等许多任务中都取得了成功。对于后者,在单变量情况下提出的一个想法是利用其底层图,从某些节点的测量中重建图信号。这种称为图采样集选择(或子集采样)的方法现在已得到充分研究 [6, 7, 8]。例如,(在无噪声设置下)假设图信号是带限的,可以证明随机选择合理数量的样本/节点足以以高概率实现完美重建 [9]。不幸的是,此类方法存在一些主要局限性。首先,到目前为止,大多数文章都集中在单变量信号上。然而,GSP 中最近的出版物主张需要多域图信号处理,以便处理张量数据或矢量数据 [10, 11]。事实上,在传感器网络等多个应用环境中,数据流被记录为在网络上演变的多变量时间序列,从而定义至少