促进国际关于政策和实施知识的共享,以提高对验证技术的需求并促进更快的吸收速度3改进的自然资源A3制定了共同指标和指标,以跟踪采用可持续农业解决方案4
1霍克斯伯里环境研究所,西悉尼大学,澳大利亚彭里斯,2个实验室,生物多样性的实验室,y funcionamiento ecosiste´mico Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China, 4 Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia, 5 Instituto Multidisciplinar para el Estudio del Medio “Ramo´n Margalef”, Universidad de Alicante, San Vicente del Raspeig,Alicante,西班牙,6森林资源系,明尼苏达大学,明尼苏达州圣保罗大学,美国,美国7研究所,全球变化研究所,环境与可持续发展学院,密歇根大学,密歇根州安阿伯,密歇根州安阿伯,美国密歇根州,美国,美国,美国。
该图显示了根据ABMR特征(G Banff评分[Glomerulitis],PTC Banff评分[Perubular Capilaritis],C4D移植物沉积)和TCMR特征(I Banff Score [I Banff Score [tstitial Subrammation],T Banff得分[Tububulitis]和theflymation fromperam frofferm forftermation 。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。 这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。 t条表示标准错误。 每个点对应于单个DD-CFDNA值。 数据表示为平均值+/- SEM。 使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。 该图显示了DD-CFDNA的增量,并显示了病变的严重程度。 扩展数据图 5。这些分数中的每一个范围为0到3,得分较高,表明更严重的病变。t条表示标准错误。每个点对应于单个DD-CFDNA值。数据表示为平均值+/- SEM。使用两侧的Kruskal-Wallis测试进行了两组之间的比较,并进行了调整以进行多个比较。该图显示了DD-CFDNA的增量,并显示了病变的严重程度。扩展数据图5
生成的AI(Genai)标志着AI从能够“识别”到AI的转变,可以“生成”各种任务的解决方案。随着生成的解决方案和应用变得越来越复杂和多方面,新颖的需求,目标和可能性已出现以解释性(XAI)。在这项工作中,我们阐述了Xai为何在Genai的兴起及其在解释性研究中的挑战中变得重要。我们还揭露了解释应该实现的小说和新兴的逃避者,例如验证能力,互动性,安全性和成本方面。为此,我们专注于调查现有作品。此外,我们提供了相关维度的分类法,使我们能够更好地表征Genai的现有XAI机制和方法。我们讨论了不同的途径,以确保XAI,从培训数据到提示。我们的论文为非技术读者提供了Genai的简短而简洁的技术背景,重点介绍了文本和图像,以更好地了解Genai的新颖或改编的XAI技术。但是,由于Genai的大量作品,我们决定放弃与解释的评估和使用相关的XAI的详细方面。因此,手稿既利益,都以技术为导向的人和其他学科,例如社会科学家和信息系统研究人员。我们的研究路线图为未来的研究提供了十个以上的方向。
行为的连续性要求动物在相互排斥的行为状态之间平稳过渡。控制这些转变的神经原理尚不清楚。秀丽隐杆线虫自发地在两个相反的运动状态(向前和向后运动)之间切换,这种现象被认为反映了中间神经元 AVB 和 AVA 之间的相互抑制。在这里,我们报告说,自发运动及其相应的运动回路不是单独控制的。AVA 和 AVB 既不是功能等效的,也不是严格相互抑制的。AVA 而不是 AVB 保持去极化的膜电位。虽然 AVA 在快速时间尺度上阶段性地抑制了正向促进中间神经元 AVB,但它在较长的时间尺度上保持了对 AVB 的紧张性、突触外兴奋。我们提出,AVA 在不同时间尺度上具有相反极性的紧张性和阶段性活动,充当主神经元,打破了底层正向和反向运动回路之间的对称性。该主神经元模型为由互斥的运动状态组成的持续运动提供了一种简约的解决方案。
尽管出现了新型疗法以治疗血液系统恶性肿瘤,但同种异体造血细胞移植(Allo-HCT)仍然是能够治愈这些疾病的必不可少的治疗方式。Allo-HCT也已显示在良性血液学疾病中是治愈性的,例如性贫血,镰状细胞病和丘脑贫血等。最近,美国移植与细胞疗法学会(ASTCT)发表了标准化的定义,用于造血恢复,移植排斥,移植物失败,移植功能差和供体嵌合体。为了尝试更广泛的国际共识,成人和儿科医师移植专家的小组是由欧洲血液和骨髓移植学会(EBMT),ASTCT,国际血液和骨髓移植研究中心(CIBMTR)和亚洲 - 帕克血液和摩尔果(Asia-Paci)组装的。共识被定义为≥70%的投票成员强烈同意或与定义有些同意。除少数例外,同意认可先前的ASTCT定义。重要的是,我们修改了现有的EBMT和CIBMTR数据收集表格,以与这些统一的定义保持一致,这些定义将促进移植研究人员和跨移植登记处之间的研究和国际协作。
摘要:希腊的罗马群体是一个长期存在的社会贫困人口,面临着极端的社会排斥和隔离。他们的边缘化包括有限的受教育,就业和住房的机会。本文探讨了他们的空间立场和社会排斥,将罗马定居点的两个案例研究与他们所属的市政和地区单位的社会形象和生活条件进行了比较。从方法论上讲,我们分析了2011年人口人口普查的定量数据,以在三个层次(定居点,市政单位,区域单位)的生活条件下测量生活条件,并且我们还使用与当地机构和两个和解的代表的访谈中的定性数据来记录我们在空间位置和社交组之间的因果关系的假设。比较表明,这两个罗姆人的定居点与随行人员显然不同,在劳动力市场中的最低位置,教育中最弱的表现,最大的家庭,最大的住房状况和最糟糕的住房条件。这种极端社会排斥的案例在贫民窟的空间近端中提出了一个关于微观隔离的意义及其在不同情况下的工作方式的问题,以及对社会不平等和空间距离之间关系的进一步研究的需求。
里贾纳 V. 雷加拉多,马萨诸塞州Erica V. Montecillo、Moises A. Dorado、Leo Neil T. Viado、Concepcion L. Khan、Aldrin Joseph J. Hao、Artemio M. Salazar 和 Maria
在聚合矩阵中掺入二维纳米结构的复合材料具有多种技术(包括气体分离)的功能成分。前瞻性地,使用金属有机框架(MOF)作为多功能纳米燃料,将显着扩大功能范围。但是,事实证明,以独立纳米片的形式合成MOF是具有挑战性的。我们提出了一种自下而上的合成策略,用于可分散的铜1,4-苯二甲基甲酸MOF MOF薄片,层层层和纳米尺寸。将MOF纳米片掺入聚合物矩阵中赋予所得的复合材料,具有与CO2/CH4气体混合物的出色二氧化碳分离性能,以及与压力分离选择性的异常和高度期望的提高。通过层压板浓缩的离子束扫描电子显微镜揭示,与各向同性晶体相比,MOF纳米片对膜横截面的优越占用源于膜横截面,从而提高了分子歧视的效率,并消除了无可生度的持续性途径。这种方法为各种应用打开了超薄MOF - 聚合物复合材料的门。
关于机器人排斥的研究仍然很少,并且仅探索了其对成年人种群的效果。尽管结果揭示了机器人排除的属性结转效果,但尚无证据表明这些结果发生在儿童机器人相互作用中。本文首先提供了对儿童机器人排斥的探索。,我们以第三人称视角使用了机器人网络范式进行了一项研究,其中52名FVE年龄在10岁之间的儿童样本。实验研究有两个条件:排除和包容。在排除条件下,儿童观察到一个同伴被两个机器人排除在外。在包含条件下,观察到的对等与机器人平均相互作用。值得注意的是,即使是5岁的孩子,当机器人排除另一个机器人