抽象的摩擦电纳米生成剂(TENG)以其出色的能力来利用环境的机械能力而闻名,由于其成本效益,高输出和适应性,因此引起了极大的关注。本评论通过对涵盖结构,材料和自动传感系统的磁辅助tengs进行全面而深入的分析,提供了独特的观点。我们系统地总结了Tengs的磁辅助功能,包括系统刚度,混合电磁 - 三元电极的组件,传输和相互作用力。在材料域中,我们回顾了磁性纳米复合材料的掺入,以及基于铁氟利的TENG和微观结构验证,这些验证也已根据现有研究进行了汇总。此外,我们深入研究了磁性辅助tengs中物理量传感和人机界面的研究进度。我们的分析强调,磁辅助超出了磁场下的排斥力和吸力,从而在改善tengs的输出性能和环境适应性方面发挥了多方面的作用。最后,我们提出了普遍的挑战,并提供了对磁辅助Tengs开发的未来轨迹的见解。
膜曲率对于多种细胞功能至关重要。虽然传统上将其归因于结构化域,但最近的研究表明,本质上无序的蛋白质也是膜弯曲的强大驱动因素。具体而言,无序域之间的排斥相互作用驱动凸弯曲,而吸引相互作用(导致液体状凝聚物)驱动凹弯曲。包含排斥和吸引域的无序域如何影响曲率?在这里,我们研究了结合吸引和排斥相互作用的嵌合体。当吸引域更靠近膜时,其凝聚会放大排斥域之间的立体压力,导致凸曲率。相反,当排斥域更靠近膜时,吸引相互作用占主导地位,导致凹曲率。此外,随着离子强度的增加,从凸曲率到凹曲率的转变发生了,这降低了排斥力同时增强了凝聚。与简单的机械模型一致,这些结果说明了无序蛋白质膜弯曲的一组设计规则。
物理启发的生成模型(例如扩散模型)构成了强大的生成模型系列。模型在这个家庭中的优势来自相对稳定的培训过程和高容量。仍然可以进行许多可能的改进。在本演讲中,我将讨论物理启发的生成模型的增强和设计。我将首先提出一种采样算法,该算法结合了以前的采样器中最好的,从而大大加快了文本对图像稳定扩散模型的生成速度。此外,我将通过在生成过程中添加样品之间的相互排斥力来讨论促进有限样品中多样性的采样方法。其次,我将讨论一个培训框架,该培训框架将可学习的离散潜在潜伏期引入连续扩散模型。这些潜伏期简化了复杂的噪声到数据映射,并减少了生成轨迹的曲率。最后,我将介绍泊松流量生成模型(PFGM),这是一种由静电理论引起的新生成模型,使领先的扩散模型与领先的扩散模型媲美。扩展版本PFGM ++,将扩散模型和PFGM放置在同一框架下,并引入了新的,更好的模型。谈话中讨论的几种算法是标准基准的最先进方法。
图 2 个体层面的遗传结构。(a)树状图描绘了个体之间的欧几里得遗传距离。该图是通过将最小二乘法 (OLS) 聚类应用于个体之间的欧几里得距离输入矩阵而生成的。个体之间的遗传距离用个体之间的总路径长度表示。(b)主坐标分析 (PCoA)。散点图显示了根据应用于个体之间欧几里得距离输入矩阵的 PCoA 的前两个排序轴。第一个 PC 轴已被镜像以模拟地理位置。(c)OLS 聚类模型的残差误差。该图右侧的热图描绘了树状图中的路径长度与实际遗传距离之间的差异。红色表示吸引力:个体之间的实际距离小于树状图所显示的距离。蓝色表示排斥力:个体之间的实际距离大于树状图所显示的距离。种群代码如表 1 所示,其中 (a) 面板中的下标表示在树状图的不同生根位置分裂的亚种群。
超快科学建立在精确时脉冲脉冲的动态组成上,并且几乎在每个模式锁定的激光器中都观察到了不断发展的脉冲。但是,到目前为止,基本的物理学很少受到控制或使用。在这里,我们演示了一种一般的方法,可以控制双弯曲激光器内的孤子运动以及超短脉冲模式的可编程合成。在ER内引入单脉冲调制:纤维激光器,我们迅速在两个暂时分离的孤子梳之间移动时间。它们的叠加在腔外产生超时的孤子序列。在实时光谱干涉仪的基础上,我们观察到通过超快非线性和激光增益动力学吸引和排斥力的相互作用引起的索塞质分离的确定性切换。利用这些见解,我们演示了纳米到皮秒泵探针延迟和可编程的自由形式的孤子轨迹的高速全光合成。这个概念可能会为新的一类全光延迟发生器铺平道路,以进行超快测量,以高度调整,循环和采集速度。
辛对称性,这是著名的Bohigas-Giannoni-Schmit (BGS)猜想的内容[8]。BGS猜想目前在半经典理论中已经得到充分证实,适用于具有适当经典极限的系统[9–11],并得到许多不同量子系统中大量数值和实验证据的支持[12–14]。多体量子系统中的情况尚不清楚,尽管最近取得了一些理论进展[15–17]。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常假设BGS猜想对多体量子系统也成立,这主要基于数值结果,但仍然缺乏严格的推导。可积通用极限与混沌通用极限之间的转变是非通用的,取决于所研究特定系统的特性,尽管已针对不同系统进行了非常详细的研究 [18,19]。例如,在可积和混沌正交情况之间的转变中,一些系统呈现分数能级排斥,P ( s ) ∝ s β,β 的值在可积情况β = 0 和相应的 RMT 集合值β = 1 之间连续变化,而其他系统呈现满能级排斥,但仅限于一部分能级 [20]。许多系统,特别是在多体情况下,都表现出前一种行为。然而,Berry 和 Robnik 的半经典转变理论预测了后一种行为 [19]。在这种情况下,P (0) = F,其中 F 由所考虑模型的经典极限在相空间中的规则轨道分数给出。在开放量子系统中,该理论的发展程度要低得多,即使第一批结果在 BGS 猜想提出后不久就出现了 [21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子的时间演化。在马尔可夫近似中,刘维尔算子是一个线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22]。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。解决这个问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布非常吻合 [21]。在混沌极限中,对于较小的 s 值,会出现普遍的立方排斥力 P ( s ) ∝ s 3,就像非厄米随机矩阵的 Ginibre 系综 [23] 中的情况一样,尽管完整的 P ( s ) 分布的细节取决于非厄米矩阵的对称性 [24, 25]。对于开放的量子自旋链,从可积到混沌转变过程中的能级间距分布已通过具有谐波约束的静态二维库仑气体拟合,其中能级排斥力由温度的倒数给出,表现出转变过程中的分数能级排斥力 [26]。最近,由于发现了新的可积多体刘维尔函数家族 [27–29],需要采用不同的方法来研究开放量子系统的可积和混沌性质。扩展精确可解和量子可积刘维尔函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌刘维尔函数复谱的统计特性 [30,31]。然而,物理多体刘维尔函数中精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在这封信中,我们将扩展参考文献中的模型。 [28] 基于 SU(2) 自旋 1 Richardson 模型,将其转换为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 家族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后,我们根据单个参数定义一个 Liouvillian,它在可积性和完全混沌极限之间进行插值。利用这些模型 Liouvillians,我们
在决定其组装行为中起着关键作用,基于各种形状的NP构建块可以制备出各种复杂的类似超结构,如晶体、塑性晶体和液晶。13 – 26 作为一个显著的例子,四面体最近被证明可以形成各种组装体,包括一维手性四螺旋、二维准晶体和三维基于簇的体心立方单超晶体。27 – 30 尽管在非球形NP方面投入了大量精力,但对具有特殊几何形状的各向异性NP进行系统的自组装研究仍然很少。哑铃在几何上由两个叶组成,由中间的杆连接,这是NP二聚体的最粗糙模型和最简单的非凸体。哑铃中部区域的扩大头部提供了额外的空间排斥力,以限制它们沿某些方向的组装,使它们成为自组装研究的有趣构建块。31 – 36 理论计算预测对称哑铃可以选择性地诱导取向无序退化晶体、人字形晶体和有序斜晶格晶体的形成。33,37 – 40 还进行了实验演示,包括金 ND 的平行排列和十字形二聚体,41,42 外部场下 ND 的受控取向,35,43 – 46 和
尘埃危害被认为是未来月球勘探的技术挑战之一。在我们过去的工作中,通过电子束从各种表面清除灰尘颗粒引入了一种新的粉尘缓解技术。这项技术是基于修补电荷模型开发的,该模型表明,电子束在灰尘颗粒之间的微腔内的电子束诱导的二次电子的发射和重新吸收会导致灰尘颗粒上的足够大电荷,从而导致由于强力排斥力而导致其从表面释放。在本文中,通过将样品相对于梁旋转,通过在灰尘覆盖的样品表面上的光束入射角改变了该技术的有效性。由于微腔的随机排列,将会以各种入射角将其暴露于光束,从而导致表面上更多的灰尘释放。对三个样本进行了清洁性能:玻璃,太空服和光伏(PV)面板。月球模拟物(直径<25μm)沉积在样品表面上,以使样品的初始清洁度为0%(全灰尘覆盖率)和40%。除了用固定的光束角度达到的清洁度外,还显示出梁入射角的整体表面清洁度增加了10-20%。玻璃和太空服样品的最终清洁度达到83 - 92%。涂有MGF 2的PV面板显示出对灰尘的更粘性,最大清洁度为50 - 63%。
DOX的潜力。 以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。 然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。 基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。 纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。 网状内皮系统很容易省略大于30 nm的纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。 zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和之间的排斥力DOX的潜力。以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和
由于自然过程和/或人类活动而堆积在月球表面的灰尘很容易粘附在宇航服、光学设备和机械部件等物体上。这可能导致灰尘危害,而灰尘危害已被视为未来月球探索的技术挑战之一。过去几年,人们研究了几种除尘技术。这里我们介绍了一种利用电子束清除表面灰尘的新方法。最近关于静电除尘的研究表明,灰尘颗粒之间形成的微腔内二次电子或光电子的发射和吸收会导致周围颗粒上积聚大量负电荷。这些颗粒之间随后产生的排斥力会导致它们从表面释放。我们在实验中使用了细小的月球模拟颗粒(JSC-1A,直径 < 25 μ m)。清洁性能是根据电子束能量和电流密度、表面材料以及初始灰尘层厚度进行测试的。结果表明,使用优化的电子束参数(~230 eV 和 1.5 至 3 μ A/cm 2 之间的最小电流密度),在 ~100 秒的时间内,整体清洁度可达到 75 – 85%,具体取决于初始灰尘层的厚度。发现宇航服样品和玻璃表面的最大清洁度相似。未来的工作将侧重于去除最后一层灰尘颗粒以及使用紫外线 (UV) 光的替代方法。