摘要:火星探测计划分析小组已将测量火星大气的状态和变化作为未来几年的重点研究。气球载仪器可以弥补当地固定着陆器和全球轨道器观测之间在中尺度距离上时间和空间分辨率的差距。使用气球系统实现这一目的的想法本质上并不新鲜,在过去几十年中已经提出过。虽然这些概念被认为是在进入和下降过程中的空中部署,但本研究中概述的概念重新审视了从火星表面发射着陆器的有效载荷甲板。这种部署选项今天主要得益于微电子和传感器小型化技术的进步,这使得气球探测器的设计比以前提出的系统小得多。本文介绍了该仪器的可行性评估,并进一步详细介绍了科学和操作概念、稻草人传感器套件、其系统组件以及相关的规模和预算估算。它还补充了提出的分析方案,用于评估、管理和减轻自动将此类气球系统从行星表面发射所涉及的部署风险。
摘要。提出了一种新模型,以描述对流层和较低平流层中声音气球的上升(高度约为30–35 km)。与以前的模型相反,详细说明了拖动系数的变化,并且气球和大气之间的热量不平衡。为了补偿缺乏声音气球的阻力系数的数据,对拖动系数和雷诺数之间关系的参考曲线是从Lindenberg上空空气方法相互比较(Luami)竞选期间启动的流量数据集中得出的。通过溶解气球内的径向热扩散方程来解释从周围空气中的热量转移到气球中。在目前的状态下,该模型不考虑太阳能电源,即只能描述夜间气球的上升。但是,它也可以改编成代表白天的声音,其太阳辐射将其模型为扩散过程。该模型的潜在应用包括声音气球轨迹的预测,可用于提高匹配技术的准确性以及空气垂直速度的推导。通过在模型中从实际提升速率中计算出的静态空气中的气球的上升速率来获得latter。该技术可提供垂直空气运动的近似值,在对流层中的不确定性误差为0.5 m s -1,在平流层中为0.2 m s -1。提供了空气垂直速度的提取