摘要:需要更绿色的过程满足平台化学物质的需求,以及从人类活动中重复使用CO 2的可能性,最近鼓励了对生物电化学系统(BESS)的设置,优化和开发的研究,以从无线电碳(Co 2,Hco 3-co 3 - )中进行有机化合物的电合合成。在本研究中,我们测试了糖氯丁基乙二醇N1-4(DSMZ 14923)的能力,从而产生乙酸盐和D-3-羟基丁酸的D-3-羟基丁酸,从CO 2:N 2气体中存在的无机碳中产生。同时,我们测试了Shewanella Oneidensis MR1和铜绿假单胞菌PA1430/CO1财团的能力,以提供降低的能力以维持阴极的碳同化。我们测试了具有相同布局,接种物和介质的三个不同系统的性能,但是使用1.5 V外部电压,1000Ω外部负载,并且没有电极或外部设备之间的任何连接(开路电压,OCV)。我们将CO 2同化速率和代谢产物的产生(甲酸盐,乙酸3-D-羟基丁酸)与非电气对照培养物中获得的值进行了比较,并估计了我们的BESS用来同化1摩尔的CO 2的能量。我们的结果表明,当微生物燃料电池(MFC)连接到1000Ω外部电阻器时,糖链球菌NT-1的最大CO 2同化(95.5%),并以Shewanella / Pseudomonas conscontium作为电子来源。此外,我们检测到C. saccharoperbutylacetonicum nt-1的代谢发生了变化,因为它在BES中的活性延长。我们的结果开放了在碳捕获和平台化学物质的电气合成中利用BES的新观点。
脑心浸液肉汤 – DM106 简介 MAST ® 脑心浸液肉汤是一种用于培养难培养生物的多功能液体培养基。该培养基的高营养成分包括脑心浸液固体、酪蛋白胰消化物、葡萄糖、蛋白胨、酵母提取物和氯化钠。 MAST ® 培养基以脱水粉末形式提供,可让最终用户制备适合细菌和真菌培养的培养基。它适合在各种容器中制备,并且容量可满足最终用户的预期用途。细菌和真菌种类的培养对于常规临床实验室目的至关重要。仅供体外使用,不可用于诊断人类疾病 预期用途 MAST ® 脑心浸液肉汤脱水培养基粉末用于生产多功能液体培养基。按照使用说明制备时,它会产生一种用于非选择性富集难培养生物的液体培养基。脑心浸液肉汤旨在与其他体外测试结合使用,例如通过肉汤培养法制备用于 Kirby-Bauer (CLSI) 纸片扩散敏感性测试的接种物。它旨在供专业、经过培训的临床实验室用户用于体外使用,不用于诊断人类疾病或其他状况,或作为治疗或病例管理决策的基础。测试原理培养基仍然是活细菌和真菌细胞生长和分离的黄金标准。使用无菌环将目标生物接种到液体培养基中,并悬浮在准备好的肉汤中(肉汤悬浮液)。肉汤悬浮液应在适合目标生物的大气条件和温度下孵育,此后培养基将变浑浊,表明有生物生长。这些方法应与其他体外设备结合使用,以辅助诊断。一旦制备好,一份培养基肉汤只能一次性使用,不能重复使用。
摘要简介:环皮二苯甲酸(CPA)是一种由各种真菌物种产生的霉菌毒素,例如曲霉(A. flavus)。这项研究旨在限制和控制烟草抗污染小麦粉的CPA产生水平。材料和方法:从埃及的各个位置收集小麦粉样品(35个样品)。确定并确定真菌污染。维持曲霉的纯菌落并测试了CPA的生产。不同的程序,例如紫外线处理,热处理,材料吸附和乳酸杆菌的生物吸附。用于控制和降低CPA水平。结果:在24个样本中,14个A.黄素分离株(58.33%)能够产生CPA。酵母蔗糖汤是CPA生产最有利的培养基,产生290.6 µg/100 mL干生物量。紫外线对不同暴露时间的CPA的合成产生了影响,暴露60分钟后降低了45.5%。CPA水平随温度和暴露时间的增加而降低,在100°C下最大减少了71.1%,持续30分钟。木炭是最有效的吸附材料,占CPA的53.3%。嗜酸乳杆菌(L. condophilus)是最有效的生物吸附剂,占CPA的96.0%以上。将嗜酸乳杆菌细胞的接种物增加5×107,将CPA水平降低了82.1%。结论:非生物和生物控制措施的多样性及其有效性可能为控制和降低CPA水平提供了新的希望。关键字:曲霉曲霉,环皮二唑酸,乳酸杆菌属,超紫罗兰色引用:Abdelsalam Ayad Ayad A,Fadelsalam Ayad A,Fadel Alsaffar M,Fadel Alsaffar M,Hamza Merza Z,Farouk Z,Farouk Ghaly M.曲霉中含有小麦粉的酸水平。J Appl Biotechnol Rep。 2024; 11(4):1439-1 doi:10.30491/jar.2024.478289.1784
产品代码:413777脑心脏输注(BHI)(脱水培养基)用于微生物学制备,暂停了37克一升蒸馏水中的培养基。充分混合并通过频繁搅拌加热来溶解。煮沸一分钟,直到完全溶解。分配到适当的容器中,并在121°C进行15分钟进行消毒。制备的培养基应存储在2-8°C下。颜色是琥珀色。为了获得最佳效果,应在同一天使用培养基,或者在沸水床上加热以排出溶解的氧气,然后在使用前冷却。脱水的培养基应具有均匀的,自由流的和颜色的浅色烤制。如果有任何物理变化,请丢弃培养基。使用脑心脏输液汤(BHIB)是一种富含营养素的液体培养基,适合种植几种细菌菌株,例如链球菌,脑膜炎球菌和肺炎球菌,真菌和酵母菌。bhiB。0.5 mL BHI肉汤的试管用于培养用于制备接种物的细菌,用于微稀释液中最小的抑制浓度(MIC)和识别(ID)测试面板。牛肉心脏和小牛脑输注和蛋白质混合物的营养丰富的碱提供氮,维生素,矿物质和氨基酸,对于多种微生物的生长必不可少。葡萄糖是碳能源,氯化钠保持渗透平衡。这种媒介非常通用,并支持许多挑剔的生物的生长。加入0.1%琼脂,该培养基用于培养厌氧菌。添加0.1%琼脂会减少氧对流电流的流动,并鼓励厌氧和微生物的发展。BHI肉汤用于制备S. aureus的培养物,以用于凝结酶测试。接种并在35±2°C下孵育18-24小时。构图参见数据表(TDS)中。
摘要:抗菌肽(AMP)可以直接杀死革兰氏阳性细菌,革兰氏阴性菌,分枝杆菌,真菌,包膜病毒和寄生虫。在浓度下,一些放大器和常规抗生素可以刺激细菌反应,从而提高其弹性,也称为刺激性反应。这包括刺激生长,流动性和生物膜产量。在这里,我们描述了刺激某些分枝杆菌生长的AMP的发现。肽14显示对结核分枝杆菌(MTB)的生长刺激作用,M。Bovis,M。Aviumsubsp。副结核病(MAP),M。Marinum,M。Avium-Intracellulare,M。Celatum和M. Abscessus。在低细菌接种物中,这种作用更为明显。与未处理的对照相比,肽从滞后相诱导更快的过渡到对数相,并在进入固定相之前将细菌保持更长的时间。在某些情况下,观察到分裂率的提高。使用MAP和75个肽的集合的初始屏幕显示13个具有激气作用的肽。对于MTB,筛选了25种人工肽的集合,发现13种可将阳性时间(TTP)的时间降低至少5%,从而改善了生长。一个天然存在的肽,11个天然发生的肽的片段和5种设计的肽,全部取自数据库APD3,并鉴定出另外44个肽,这些肽也将TTP降低至少5%。目前,在这项研究中鉴定出的肽正在商业用途,以改善人类和动物分枝杆菌诊断的恢复和培养。lasioglossin ll-iii(Bee)和ranacyclin e(青蛙)是最活跃的天然肽,人cathelicidin ll37 ll37碎片GF-17和猪cater依氏蛋白酶cathelicidin Protegrin-1片段是自然出现的肽的最活跃的片段。肽14显示10 ng/ml和10 µg/ml之间的生长活性,而稳定性优化的肽14D的活性范围为0.1-1 µg/ml。
许多RNA和DNA病毒表现出神经脱落特性,并且可能与急性或慢性神经系统表现有关(Debiasi和Tyler,2004)。因此,引起中枢神经系统(CNS)疾病的病原体的快速鉴定至关重要,预后的生物标志物对早期疾病管理和对治疗性干预措施有帮助。然而,研究与病毒感染有关的神经退行性和神经蛋白的流动过程的生物标志物,由于实验模型的数量有限,在访问人类中枢神经系统中的多项培养,并且通常可用的脑组织可用(Rauf等人,20222年)。在研究由病毒感染触发的神经退行性疾病时,应考虑许多因素。可能引起中枢神经系统感染的因素是病毒接种物,这常常被忽略。例如,小鼠模型仅在感染高剂量的黄热病病毒(YFV)时会出现神经系统症状,这表明某些血浆YFV浓度对于神经浸觉是必需的(Douam等,2017)。一方面感染的途径也至关重要。神经细胞可以直接暴露,例如嗅觉细胞,如人类β-核可纳病毒所述(Desforges等,2014)。此外,神经元可以通过神经元到神经元转移感染,如疱疹和狂犬病病毒所示(Ugolini,2011年)。某些病毒可能是高度神经性到未成熟的中枢神经系统的神经性,例如寨卡病毒(Garcez等,2016; Schuler- Faccini et al。,2016)。此外,感染部位也可能是症状发展的关键。最后,神经元绕过血脑栓(BBB),例如通过感染BBB内皮细胞感染或在“ Trojan马”策略中感染白细胞的迁移,如Nipah Virus(Mathieu等2008),htlv-1(AFN),如nipah virus eT。蓝色病毒(Maximova and Pletnev,2018年)。从这个意义上说,莎(Sha and Chen)在重庆三大大学(Chonging Three Gorges University)
抗菌易感性测试(AST)是由实验室技术人员执行的实验室程序,以识别哪种抗菌方案对个别患者特别有效。引入各种用于治疗各种感染的抗菌素表明有必要在所有微生物实验室中进行抗菌敏感性测试作为常规程序。抗生素通常被定义为微生物产生的物质,例如青霉素,该物质具有杀死或抑制其他微生物(主要是细菌)的生长的能力。抗菌敏感性测试(ASTS)基本上测量了抗生素或其他抗菌剂抑制体外微生物生长的能力。抗生素易感性测试的基本原理已在80年以上的微生物实验室中使用。直到1950年代,实验室的方法和设备缺乏准确确定生物体对抗菌剂的体外反应的方法。Bauer等人开始使用圆盘扩散系统开发用于抗菌敏感性测试的标准化方法。抗菌易感性测试是定量的或定性的。临床实验室目前采用了几种方法,具体取决于他们提供的实验室测试菜单。这些方法包括磁盘扩散和最小抑制浓度(MIC)方法。光盘扩散测试是一种定性测试方法。琼脂盘扩散测试是常规抗菌易感性测试的最方便和广泛使用的方法。全国临床实验室标准委员会(NCCLS),现在称为临床实验室标准研究所(CLSI)已发布了有关光盘扩散系统的全面文件。在随后和当前的实践中,将抗菌浸渍纸盘应用于琼脂表面。各种监管机构和标准编写组织,根据Kirby-Bauer方法发布了标准化的参考程序。WHO和FDA发布了碟片系统的标准化参考程序,并由CLSI(以前为NCCL)定期更新任何抗菌测试,质量控制或临床测试。但是,在处理灵敏度光盘时,很少有预防措施,应咨询最新的CLSI文档以获取当前建议。敏感性测试程序真菌接种物制备
摘要:氨基甲酸乙酯(EC)是酒精饮料中乙醇与尿素在发酵和储存过程中发生反应而产生的一种天然物质。少量饮用EC会引起头晕和呕吐,过量饮用则会导致肾癌。因此,减少酒精饮料中EC的形成对食品安全和人类健康具有重要意义。降低酒精饮料中EC含量的策略之一是开发一种新的酵母发酵剂菌株,以减少发酵过程中EC的形成。在本研究中,我们从Nuruk(韩国传统的以谷物为基础的野生酵母和霉菌接种物)中分离出一种多倍体野生型酵母酿酒酵母菌株,并通过基因组工程开发了一种发酵剂来降低酒精饮料中的EC含量。我们利用基于CRISPR/Cas9的基因组编辑工具删除了酿酒酵母中参与EC形成的目标基因的多个拷贝。首先,在酿酒酵母的基因组中完全删除编码负责尿素形成的精氨酸酶的CAR1基因。此外,在酿酒酵母中删除编码控制与尿素吸收和降解相关的几个基因(DUR1、2和DUR3)表达水平的转录因子的GZF3基因,以进一步减少EC的形成。通过RT-qPCR验证基因缺失的效果,以确认与EC相关的基因转录水平的变化。与野生型菌株相比,携带CAR1和GZF3基因双缺失的酿酒酵母菌株成功降低了发酵培养基中的EC含量,而酒精含量和发酵曲线没有显著变化。最后,我们使用 S. cerevisiae dCAR1&GZF3 双缺失菌株酿造了韩国传统米酒 Makgeolli,与野生型菌株相比,Makgeolli 中的 EC 含量显著降低,最高可达 41.6%。这项研究成功地展示了通过 CRISPR/Cas9 基因组编辑野生酵母来开发一种发酵剂以减少酒精饮料中的 EC 形成。
(1)硕士学生;生物技术研究生中心;联邦Sergipe大学; av。Marechal Rondon,S/N,Jardim Rosa Elze社区,SãoCristóvão-Se,邮政编码:49100-000; acsc.carol@hotmail.com; (2)DCR奖学金;土壤微生物实验室; Embrapa沿海桌子; av。Beira Mar,3250; aracaju;如果; 49025-040; ericaanjos@yahoo.com.br; (3)研究人员;土壤微生物实验室; Embrapa沿海桌子; av。Beira Mar,3250; aracaju;如果; 49025-040; marcelo@cpatc.embrapa.br。摘要 - 土壤居住在多种细菌中,这些细菌很少或不培养的系统发育群,这些细菌可能具有巨大的生物技术潜力。对传统培养方法进行隔离和培养方法的简单修改有可能增加土壤细菌的培养多样性。这项研究的目的是评估培养平均值,固化剂,血小板方法,孵化周期和接种量对土壤细菌菌落形成单位(UFC)出现的影响。根据不同的处理,将农业种植和森林的土壤样品接种,并在30 o C下孵育10周。确定每个每周间隔的菌落数(NC)的数量。NC数据。观察到表面扩散方法中大量细菌的生长,并观察到更稀释的接种物扩散方法。最大的菌落出现速度在孵育的前两周得到验证。较少的浓缩培养意味着有利于分离缓慢的生长细菌,而对于最浓缩的手段来说,相反的情况是正确的。使用无亲营养培养的方法,更稀释的插图和延长的孵化期允许恢复较高比例的晚期细菌,这应该以鲜为人知的或直到那时为止以很大的比例进行。关键字:无法耕种的可行,媒体,固化代理。引言土壤中存在的细菌种群的培养和枚举是土壤微生物学家一个多世纪以来最大的挑战之一。通过斑块技术获得1-10%的土壤细菌物种。这种方法提供了一种人工实验室环境,其培养基与这些培养基不同于这些培养基
摘要:在压力或最佳条件下,植物培养了一个特定的共生微生物行会,以增强包括代谢调节在内的关键功能。尽管植物基因型在微生物选择中的作用有充分的文献证明,但该基因型特异性微生物组装在维持宿主稳态方面的潜力仍未得到充分研究。在这项研究中,我们旨在评估与植物增长促进根瘤菌(PGPR)的橄榄基因型对微生物接种对微生物接种的特异性(PGPR),以查看先前与本地或质量微生物的抗压植物是否会在叶子中表现出任何变化。在受控和压力条件下测试了两个突尼斯精英品种,Chetoui(干旱敏感)和Chemleli(耐旱)。叶片样品,以鉴定未靶向的代谢产物。根和土壤样品用于提取使用16S rRNA扩增子测序的细菌群落分析的微生物基因组DNA。分别将分数分析,聚类分析,热图,Venn图和Krona图表应用于代谢和微生物数据。结果表明,在应力和接种条件下,Chetoui品种的叶子代谢组的动态变化。在最佳状态下,PGPR财团引起了敏感变化的代谢模式的明显变化,与在耐旱的品种中观察到的植物化学相一致。这些变化涉及脂肪酸,生育酚,苯酚,甲氧基诺酚,硬霉素,三萜和糖。另一方面,表现出可比代谢谱的化学品种似乎不受应力和接种的影响,可能是由于其耐受能力。微生物在治疗中的分布明显不均匀。测试的幼苗遵循各种特定于选择有益的土壤细菌以减轻压力的策略。仅在两个品种的最佳条件下才检测到一种高度丰富的湿型接种物,这使得植物基因型的水分历史成为塑造微生物群落的选择性驱动器,从而预测大型生态系统中微生物活性的有用工具。