位置传感器是一个反馈设备,也是任何闭环致动空间机构的组成部分。此反馈设备通常是电位计。电位器给出了与机械输入相关的电压变化。电位仪自太空飞行开始以来就使用了,并且相对具有成本效益。它们可从较低的交货时间较低的几家供应商那里获得。但是,机械滑动触点引入了其他机械电阻,并限制了寿命和速度。物理传感范围也可能受到限制,并且在寿命的后期,电输出是嘈杂的。要克服这一限制并补充Ruag的Inhouse产品组合,开始了开发工作。目标是开发一个简单的低成本位置传感器,能够替换或提供有效的电位仪。将非接触式工作原则设定为发展目标。关于成本和空间遗产的重点比解决方案更重视。光学编码器的工作原理适用于不锈钢缝面膜,永久磁铁和霍尔传感器开关的组合。所得的低分辨率非接触传感器已成功原型并在功能上进行了测试。简介
接触力是人类与周围物理世界互动的自然方式。然而,我们与数字世界的大多数互动主要基于简单的二元触觉(接触或非接触)。同样,当与机器人互动执行复杂任务(例如手术)时,包括大小和接触位置在内的更丰富的力信息对于任务执行非常重要。为了应对这些挑战,我们提出了 WiForce 的设计和制造,它是一种“无线”传感器,可以感知接触力的大小和位置。WiForce 通过将力的大小和位置转换为反向散射标签的入射 RF 信号的相位变化来实现这一点。因此,相位变化被调制到反向散射 RF 信号中,从而通过推断反射 RF 信号的相位来测量力的大小和接触位置。WiForce 的传感器设计用于支持高达 3 GHz 的宽带频率。我们在不同的环境下以无线方式评估力感应,包括通过幻影组织,并实现 0.3 N 的力精度和 0.6 mm 的接触位置精度。
20 世纪早期的滑线变阻器 19 世纪的碳堆 20 世纪早期的碳堆 简单的滑线可变电阻装置 确定未知电压的测量仪器 用于精密比值测量的现代仪器 专利图(或 100 多年前发明的装置) 20 世纪早期的专利图 A. O. Beckman 的 10 圈电位计专利图 MarIan E. B ourns 的微型调节电位计专利图 当今的调节电位计 在绝缘管上缠绕电阻丝 可以使用扁平心轴 弯曲心轴节省空间并允许旋转控制 将心轴塑造成螺旋状可在小空间内增加长度 复合材料的电阻元件 简单的导螺杆有助于可设置性 可以在旋转电位计中添加蜗轮 简单的滑动接触位置指示装置 用于滑动接触位置指示的精确装置 通用名称
(https://maps.ccom.unh.edu/portal/apps/webappviewer/index.html?id=28df035fe82c423cb3517295d9 bbc24c#. 2021 年 12 月 10 日) ........................................................................................................................... 20 图 19:R/V Gulf Surveyor (http://ccom.unh.edu/facilities/research-vessels/rv-gulf-surveyor)。 .......... 21 图 20:RVGS 图,其中包含关键位置和拖曳点相对于船舶参考点的偏移(未按比例绘制)。 ............................................................................................................................. 21 图 21:安装了拖缆的 R/V Gulf Surveyor 甲板上的 Klein 4K-SVY 侧扫。 ............................................................................................. 23 图 22:具有声学阴影、距离尺度、第一次回波和水柱的典型 SSS 数据示例。 ........................................................................................................................................................... 24 图 23:带有集成表面声速探头的 Kongsberg EM2040P MBES。 (https://www.kongsberg.com/maritime/products/ocean-science/mapping-systems/multibeam-echo- sounders/em-2040p-mkii-multibeam-echosounder-max.-550-m/) ........................................................................... 25 图 24:安装在 R/V Gulf Surveyor 中心支柱上的 EM2040P(照片:NOAA 的 Patrick Debroisse 中尉)。 ........................................................................................................................................... 26 图 25:在 50m 范围内布置用于位置置信度检查的 SSS 线。 ........................................................................... 27 图 26:相对于 MBES 目标位置(红色)的 SSS 接触位置(蓝色)。 ......................... 28 图 27:地理参考框架和船舶参考框架中的接触位置误差。接触位置主要位于 MBES 位置的东面。 ......................................................................... 28 图 28:应用地图校正后的 SSS 接触位置。 ......................................................................... 29 图 29:应用地图校正后,在地理和船舶参考框架中看到的 SSS 接触位置 ............................................................................................................................. 29 图 30:测量区域,其中 60m 和 80m 线路平面图以红色显示。 ........................................................................... 30 图 31:掩盖马赛克(左)隐藏接触,透过马赛克(右)显示接触。 ...... 32 图 32:使用自动所有数据,显示应用增益和定位校正之前的所有线路的 SSS 马赛克。覆盖在 RNC 13283 上。...................................................................................................... 33 图 33:使用 Auto-All 数据可视化应用地图校正和 EGN 后的 SSS。....... 34 图 34:DTM(顶部)显示折射伪影,与 ping 数据(底部)中看到的伪影相同。...................................................................................................................................................................... 35 图 35:EM2040P MBES 数据的全覆盖 DTM............................................................................................................. 36 图 36:EM2040P 数据从天底滤波到 45º 后的 DTM。............................................................................. 37 图 37:EM2040P 以 300 kHz 和 50cm 分辨率收集的 MBAB。西北采集点在左侧,东南采集点在右侧。后向散射强度以分贝表示,默认比例为 10 到 -70dB。 ........................................................................................................................... 38 图 38:调整后的 NW MBES 数据可视范围为 -4 至 -28db.................................... 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。........................................ 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。............................................................................................................. 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。............................................................................................. 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红色框突出显示了沙波应重叠的区域。............................................................................. 42 图 43:NW 采集站点:叠加之前的 MBES(顶部)、SSS(中)和 MBES 后向散射(底部)。 ........................................................................................................................................................... 44 图 44:SE 采集点:叠加前的 MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)。 ........................................................................................................................................... 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45
目的:研究显示丘脑前核 (ANT) 的深部脑刺激 (DBS) 是治疗特定边缘系统癫痫患者的有效方法。然而,该适应症的最佳靶点和电极位置仍未确定。因此,本系统评价和荟萃分析的目的是量化所有已发表的 ANT DBS 系列中主动接触位置与结果之间的关联。方法:使用 PRISMA 标准进行文献检索,以确定所有报告 ANT 治疗癫痫的 DBS 主动接触位置和结果的研究。提取患者、疾病、治疗和结果数据进行统计分析。在一个共同的参考框架上分析了对 DBS 有反应者(定义为最后一次随访时癫痫发作减少 ≥ 50%)与无反应者的接触位置。计算了每组接触的质心(按临床反应加权)。结果 从 555 项筛选出来的研究中,共有 7 项研究(涉及 162 名患者)符合纳入标准并进行了分析。在整个队列中,癫痫平均持续时间为 23 年,DBS 前平均发作频率为每月 56 次。5 项研究(n = 62,占患者队列的 38%)采用直接定位植入 DBS 电极,4 项研究(n = 123,76%)采用经脑室电极轨迹植入。在平均 2.3 年的随访期内,56% 的患者被认为是反应者。与无反应者相比,反应者的主动接触位于前 1.6 毫米(95% CI 1.5-1.6 毫米,p < 0.001),且毗邻乳头丘脑束(MTT)。结论 准确定位 ANT 对 DBS 治疗癫痫的成功至关重要。这些发现表明,刺激 MTT 附近的 ANT 亚区可改善疗效。
20 世纪早期的滑线变阻器 19 世纪的碳堆 20 世纪早期的碳堆 简单的滑线可变电阻装置 确定未知电压的测量仪器 用于精密比值测量的现代仪器 专利图(或 100 多年前发明的装置) 20 世纪早期的专利图 A.O. Beckman 的 10 圈电位计专利图 MarIan E. B ourns 的微型调节电位计专利图 当今的调节电位计 在绝缘管上缠绕电阻丝 可以使用扁平心轴 弯曲心轴节省空间并允许旋转控制 将心轴塑造成螺旋形可在小空间内增加长度 复合材料的电阻元件 简单的导螺杆有助于可设置性 可在旋转电位计中添加蜗轮 简单的滑动接触位置指示装置 用于滑动接触位置指示的精确装置 通用名称
20 世纪早期的滑线变阻器 19 世纪的碳堆 20 世纪早期的碳堆 简单的滑线可变电阻装置 确定未知电压的测量仪器 用于精密比值测量的现代仪器 专利图(或 100 多年前发明的装置) 20 世纪早期的专利图 A.O. Beckman 的 10 圈电位计专利图 MarIan E. B ourns 的微型调节电位计专利图 当今的调节电位计 在绝缘管上缠绕电阻丝 可以使用扁平心轴 弯曲心轴节省空间并允许旋转控制 将心轴塑造成螺旋形可在小空间内增加长度 复合材料的电阻元件 简单的导螺杆有助于可设置性 可在旋转电位计中添加蜗轮 简单的滑动接触位置指示装置 用于滑动接触位置指示的精确装置 通用名称
目的 丘脑前核 (ATN) 是深部脑刺激 (DBS) 治疗药物难治性癫痫的常见靶点。然而,尚未明确确定 ATN 内基于图谱的最佳 DBS (主动接触) 靶点。本项回顾性研究的目的是分析主动接触位置与癫痫发作减少之间的关系,以建立基于图谱的 ATN DBS 最佳靶点。方法 在 2016 年至 2018 年期间接受 ATN DBS 手术治疗药物难治性癫痫的 25 名患者中,那些接受 1 年以上随访评估的患者有资格纳入研究。在初始 6 个月的刺激期后,患者被分为对治疗有反应 (癫痫发作频率中位数减少≥ 50%) 或无反应 (癫痫发作频率中位数减少< 50%)。对于无反应的患者,调整刺激参数和/或主动接触位置,并监测他们的反应性至少 1 年。将术后 CT 扫描与术前 MRI 图像进行非线性配准,以确定蒙特利尔神经学研究所 (MNI) 152 空间中所有主动接触的中心坐标和基于图谱的解剖定位。结果 19 例难治性癫痫患者在植入针对 ATN 的双侧 DBS 电极后接受了至少一年的随访。位于 ATN 体积前半部分重心(定义为前中心 (AC))附近的主动接触与不在此位置的接触相比具有更大的癫痫发作减少率。有趣的是,最初无反应的患者在最后的术后随访中通过将主动接触调整到更靠近 AC 的位置,最终可以大大减少癫痫发作。结论 接受针对 AC 的刺激的患者可能具有有利的癫痫发作减少率。此外,作者在最初无反应的患者中重新定位电极后获得了额外的良好结果。针对该最佳区域进行有目的的战略性轨迹规划可能会预测 ATN DBS 的良好结果。
摘要 - 重新研究已经报道了生物启发的软机器人的显着性,以表现出灵敏和接触式的友好型。在这项工作中,我们采取了第一个步骤,通过提出一个全面的建模和控制框架来解决细长气动软机器人的问题。我们的框架采用了一个完全参数化的模型,该模型可以准确地描述了使用Hermite插值的机器人配置和分布力。利用此模型,我们进一步建立了一种估计算法,该算法可以推断出有限的运动数据中的完整机器人配置并分布外力,从而使接触位置和力量感知。整合了该模型和估计器,我们的控制框架 - 工作在不同的力下实现了精确的机器人运动控制,平均轨迹跟踪误差在0.3 mm之内。它还检测到并适应不确定的接触,在自动避免障碍物和精确抓握的测试中证明了这一点。此框架对各种应用程序(例如环境探索和安全操纵)有望在需要与环境的互动中进行安全操作。