确定施加载荷的位置点,以避免航空航天应用中使用的薄截面发生扭曲。 理解区分曲梁中中性轴和质心轴的概念。 理解为分析受扭转的非圆形杆而开发的类比模型,以及分析滚动体之间产生的应力和三维物体中的应力。 UNIT-I:应力分析:点的应力状态、任意平面上的应力分量、主应力、应力不变量、莫尔圆、最大剪切平面、八面体应力、平面应力状态、平衡微分方程、边界条件。应变分析:点附近的变形、点的应变状态、剪应变分量的解释、应变和主应变的变换、兼容条件。平面应变状态。线性应力-应变-温度关系:内能密度和互补内能密度。各向异性、正交各向异性和各向同性弹性的胡克定律。各向同性材料的热弹性方程 UNIT-II 剪切中心:轴对称和非对称截面的弯曲轴和剪切中心-剪切中心。薄壁截面的剪切应力、箱梁的剪切中心非对称弯曲:非对称弯曲梁的弯曲应力、非对称弯曲导致的直梁挠度。 UNIT-III:曲梁理论:温克勒-巴赫周向应力公式 – 局限性 – 校正系数 – 曲梁的径向应力 – 闭环承受集中和均匀载荷 – 链环中的应力。第四单元:扭转:线性弹性解,一般棱柱形杆——实心截面,如圆形、椭圆形、三角形和矩形,普朗特弹性膜(皂膜)类比;窄矩形截面,空心薄壁扭转构件,多连通截面。第五单元:接触应力:介绍,确定接触应力的问题,接触应力解所基于的假设;主应力表达式;计算接触应力的方法,点接触物体的挠度;两个物体在窄矩形区域接触的应力(线接触)垂直于面积的载荷,两个物体线接触的应力,垂直于和切向于接触面积的载荷。
本文介绍了涉及功能梯度多铁性涂层的移动接触的求解程序。假设一个平面或三角形轮廓的移动刚性冲头与多层介质接触,该介质由磁电弹性涂层、弹性夹层和弹性基板组成,并被建模为半平面。该公式基于平面弹性动力学的波动方程和麦克斯韦方程。应用傅里叶变换和伽利略变换,推导出平面和三角冲头问题的第二类奇异积分方程。开发了一种利用雅可比多项式的展开-配点技术来数值求解积分方程。通过与文献中的结果进行比较,验证了所提出的程序。考虑功能梯度磁电弹性涂层进行的参数分析表明了性能变化曲线、冲压速度和涂层厚度对接触应力、电位移和磁感应的影响。所提出的方法可用于受移动接触影响的多铁性分层系统的分析和设计研究。
摘要:生物矿化通过强化软组织为生物体提供承重和保护功能。将生物矿化原理以受控和自组织的方式转化为材料科学是非常可取的,但具有挑战性。自然系统的一个重要教训是,结晶可以通过区室化和模板化来控制。在这里,我们开发了一种结晶技术,该技术基于氧化石墨烯介导的区室化和模板化方解石纳米涂层的棱柱形生长,通过控制离子扩散到微区室中,从而产生多阶段、自组织的结晶,并代表了一种提供连续纳米涂层和增强聚合物表面在接触应力下的摩擦学性能的有效策略。本研究提供了一种自下而上的方法,使用非常基本的生物矿化原理来保护聚合物表面,这对于生物医学应用和以可持续的方式制造高性能功能材料很有意义。■ 简介
确定施加载荷的位置点,以避免在航空航天应用中使用的薄层中扭曲。了解弯曲梁中中性轴和中心轴的区分的概念。理解用于分析经受扭转的非圆形条开发的类比模型,并分析滚动体和三维体中压力之间产生的应力。单位– I:剪切中心:弯曲轴和剪切中心的公理对称和不对称切片。不对称的弯曲:经受非对称弯曲的梁中的弯曲应力,由于非对称弯曲而导致的直束的挠度。单位– II:弯曲梁理论:绕线应力的Winkler Bach公式 - 局限性 - 校正因子 - 弯曲梁中的宽度应力 - 闭合环,受到链接链路中的浓缩和均匀载荷应力。单位– III:扭转:线性弹性溶液prandtl弹性膜(肥皂膜)类比;狭窄的矩形横截面,空心的薄壁扭转构件,倍数连接的横截面。单元– IV:接触应力:简介,确定接触应力的问题,基于接触应力的解决方案的假设;主压力的表达;计算接触应力的方法,体接触中的身体挠度;在狭窄的矩形区域(线接触)上接触的两个物体的应力(线接触)正常为面积,两个物体接触的应力,正常和切线与接触区域的负载。教科书:1。Boresi&Sidebottom的高级材料力学,Wiely International。2。和较好的J.N.单位– V:介绍三维问题:棱柱形杆的均匀应力拉伸,其自身的重量扭曲恒定横截面的圆形轴,板的纯弯曲。Timoschenko S.P.的弹性理论McGraw,Hill Publishers 3 Rd Edition参考书:1。材料的高级强度由Den Hortog J.P. 2。 Timoshenko的板块理论。材料的高级强度由Den Hortog J.P. 2。Timoshenko的板块理论。Timoshenko的板块理论。
齿轮通常被定义为齿轮或多杆凸轮,通过连续接合和脱离牙齿的方式将功率和运动从一个轴传递到另一个轴。齿轮通常在众多机器的各个行业中使用,例如工厂自动化,工业机器人,建筑机器,汽车等。尖刺齿轮具有平行于旋转轴的牙齿,用于将功率和运动从一个轴传输到另一个轴(平行轴)。在所有类型的齿轮中,刺齿轮被认为是最简单的齿轮[2]。刺激齿轮的设计取决于输入参数,例如功率,速度,操作条件,疲劳寿命以及需要迭代过程。许多研究人员已经在计算机辅助工程工具的帮助下进行了分析和检查,因此在齿轮的螺距圆圈上估计了在齿轮的牙齿上的有效圆周力,而在网络划分时,在从一个轴到另一个轴向另一个轴的动力和运动传输过程中,在齿轮对中实际上有两种应力。它们是(a)弯曲应力,由于切向力而引起的齿轮齿和(b)由于要发射的功率的径向分量引起的表面接触应力[4],[5]。已将各种钢,铸铁,青铜和酚树脂用于齿轮。新材料,例如尼龙,钛和烧结铁在齿轮工作中也变得很重要[1]。材料和制造工艺将它们转换为有用的零件,这是所有工程设计的基础。有超过100,000种工程材料可供选择。典型的设计工程师应准备好访问30至60材料的信息,具体取决于他或她处理的应用程序范围[11]。由于材料科学领域的快速发展,研究人员正在提出越来越多的材料。这引起了物质宇宙的巨大增加,并将我们的注意力集中在6个大型类别之间的竞争上:金属,聚合物,弹性体,陶瓷,玻璃,复合材料,因此导致了材料选择过程中的困惑。迈克尔·阿什比(Michael Ashby)建议的一种技术是一种先进的材料选择过程,它提供了材料图,以获取所需物镜的最佳材料,例如最大化质量或刚度。材料限制性能,因此该技术显示了将一个属性与另一个属性绘制的想法。如果该技术是精心实施的,它为我们提供了选择过程的潜在候选材料[6]。在CES Edupack软件上,可以轻松地将提出的想法作为计算机辅助工具实现。在Ashby图表中,都强调了机械,光学,热,物理等特性[7]。如今,几乎每种应用都需要轻巧和高强度设计,例如汽车,机器人应用,航空航天行业和机械。在这项研究中,我们将研究设计轻质和高强度刺激齿轮所需的材料。主要目标,设计要求,
标题:十种人体工程学风险评估方法的比较研究杂志:高级结构化材料,第174卷,2022年。Document Type: Book Chapter Authors: Mohamad Rashid Mohamad Rawan, Mohd Amran Mohd Daril, mamran@unikl.edu.my Khairanum Subari, khairanum@unikl.edu.my Mohamad Ikbar Abdul Wahab mikbar@unikl.edu.my Full text link: UniKL IR : https://ir.unikl.edu.my/jspui/handle/123456789/28058 Publisher : https://www.springerprofessional.de/en/a-comparative-studies-of-ten-ergonomics-risk- assessment-methods/23113842 Scopus preview: https://www.scopus.com/record/display.uri?eid=2-S2.0-85131305457&doi = 10.1007%2F978-3-031-0141488888_15与工作相关的肌肉骨骼疾病或WMSD最常引用在与重复,过度武力,振动,接触应力和尴尬姿势的危险因素有关的各种研究中。下背部,颈部,前臂,手腕,手,肩膀和肘部是受这些WMSD影响的最常见的身体区域。科学文献表明,WMSD的最佳预防是减少对风险因素的接触。换句话说,应评估WMSD的危险因素,尤其是在工作区域,以确保工人与WMSD的风险因素的相互作用较少。WMSD的风险因素的评估可以分为三类,主观判断,直接测量和系统观察。基于审查,测量是确定WMSD风险因素的最准确和可靠的方法,但是它需要大量资源投资,而观察方法是人体工程学家使用的最常见方法。与识别危险因素的其他方法相比,观察方法比较容易且成本较低。在收集实际站点中的数据时,这也是最灵活的方法。该研究的目的是获得该方法之间的比较结果,以确定预防WMSD中最有效的人体工程学风险评估。尽管人体工程学从业人员,职业治疗师,雇主,工会工人以及健康与安全部门需要有关可预防WMSD的最有效评估方法的信息,但文献仍然很少提供应用研究,这些研究已经测试了这些方法进行比较,并且缺乏有关哪些方法是防止WMSD的最佳方法。人体工程学从业人员之间也没有任何论点,因为选择的最佳方法是开发与任务相关的实验并比较各自的结果。
摘要 目的. 将穿透性神经探针插入大脑对于神经科学的发展至关重要,但它涉及各种固有风险。原型探针通常插入水凝胶基大脑模型中,并分析其机械响应以了解体内植入期间的插入力学。然而,人们对神经探针在水凝胶大脑模型中插入动力学的潜在机制,特别是开裂现象,仍了解不足。这种知识差距导致在将模型研究获得的结果与在体内条件下观察到的结果进行比较时出现误解和差异。本研究旨在阐明探针的锐度和尺寸对探针插入水凝胶模型时出现的开裂机制和插入动力学的影响。方法. 系统地研究了由尖端角度、宽度和厚度定义的不同柄形状的假探针的插入。透明水凝胶中插入引起的裂纹用不混溶染料加重,通过原位成像跟踪,并记录相应的插入力。开发了三维有限元分析模型来获得探针尖端和幻像之间的接触应力。主要结果。研究结果揭示了一种双重模式:对于尖锐、细长的探针,由于与插入方向一致的直裂纹不断扩展,插入力在插入过程中始终保持在较低水平。相反,钝的、厚的探针会产生很大的力,并且随着插入深度的增加而迅速增加,这主要是由于形成了具有锥形裂纹表面的分支裂纹,以及随后的内部压缩。这种解释挑战了传统的理解,即忽视了开裂模式的差异,并将增加的摩擦力视为导致更高插入力的唯一因素。通过实验确定了区分直裂纹和分支裂纹的关键探针锐度因素,并从三维有限元分析中得出了两种开裂模式之间转变的初步解释。意义。本研究首次提出了神经探针插入水凝胶脑模型时两种不同开裂模式的机制。建立了开裂模式与插入力动力学之间的相关性以及探针锐度的影响,通过模型研究为神经探针的设计提供了见解,并为未来研究探针植入过程中脑组织开裂现象提供了参考。