摘要 - 在障碍物周围执行各种自动化任务时,对移动机器人的安全和平滑的运动控制至关重要,尤其是在人和其他移动机器人的情况下。移动机器人在朝着指定的目标位置迈进时使用的总转弯和空间在确定所需的控制工作和复杂性方面起着至关重要的作用。在本文中,我们考虑了基于角度反馈线性化的标准独轮车控制方法,并提供了一种明确的分析措施,以根据独轮车状态和控制收益来确定在独轮车控制过程中的总转盘。我们表明,与线性控制增益相比,可以选择更高的角度控制增益来避免围绕目标位置的不希望的螺旋振荡运动。相应地,我们使用总的转弯努力建立了在闭环独轮车轨迹上结合的准确,明确的三角运动范围。运动范围预测的提高精度是由于对独轮车状态和控制参数的更强依赖性而产生的。要比较替代循环,圆锥和三角运动范围预测方法,我们介绍了提议的独轮车运动控制和运动预测方法的应用,用于在数值模拟中围绕障碍物围绕障碍物进行安全的独轮车路径。
2-5.控制的灵敏度和增益。由于许多控件会改变其运动和力以实现功能,因此增益或灵敏度是关键的设计参数。特别是,它强烈影响任务速度和错误之间的权衡。高增益值往往有利于飞行员的舒适度和快速输入,但也可能导致错误(例如,超调,无意激活)。低增益值往往有利于需要精确度的任务,但也可能对任务来说太慢。控制的增益和灵敏度通常需要权衡以支持预期功能。特别考虑可变增益控制。准确复制实际飞机中存在的响应滞后和控制增益特性,并表明控制的增益和灵敏度对于预期功能是可以接受的。
摘要:本文介绍了使用差分进化 (DE) 来调整比例积分微分 (PID) 控制器、具有积分作用的线性二次调节器 (LQR) 以进行飞机俯仰控制。提出了两个控制器的优化问题,以优化超调百分比、稳定时间和稳态误差,同时应用加权和技术。PID 控制器的设计变量是控制增益,而 LQR 控制器的设计变量是 Q 和 R 矩阵。LQR 控制器采用各种积分控制增益值,从而形成具有积分作用控制器的 LQR。在添加一些干扰的同时,基于单步和多步响应研究了最佳控制器的性能。结果表明,PID 控制器对响应速度有效,而具有积分作用控制器的最佳 LQR 对消除稳态误差有效。两种最佳控制器都具有鲁棒性,可以处理干扰抑制。关键词:PID、LQR 积分作用、DE、飞机俯仰控制
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
摘要:本文提出了一种增量反步滑模 (IBS) 控制器,用于无尾飞机的轨迹控制,该飞机具有未知的干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种稳定性增强器 (SE),它限制了虚拟控制输入的速率和幅度。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,第一层 SE 将被激活以修改轨迹跟踪误差;当虚拟控制输入超过边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。借助 SE,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数的自适应估计器,与 IBS 一起,使控制器表现出出色的鲁棒性。最后,给出了两个仿真结果。第一次仿真表明系统对外界干扰和模型不确定性不敏感,第二次仿真证明了SE的有效性。
总能量控制系统 (TECS) 已被提议作为一种替代控制概念,用于跟踪纵向飞行中的高度和速度。在 TECS 中,总能量(即动能和势能的总和)以及这两种能量形式之间的分配受到控制。油门和升降舵输入的组合通过提高设计的模型独立性并在公式中考虑高度和速度动力学之间的飞行机械耦合,克服了传统比例积分 (PI) 控制器的一些局限性。本文的目的是对两种控制方法进行比较,重点是跟踪精度、干扰抑制和瞬态响应。为此,使用 Vitesse 模型飞机作为试验台评估了一个案例研究。给出了使用两种控制方法的 Vitesse 闭环数值模型的仿真结果。Vitesse 的数值模型是使用 OpenVSP 和 VSPAero 生成的。为了找到两种控制方法的控制增益,对 PI 和 TECS 控制架构应用了相同的设计标准。结果表明,两种控制系统都能达到设计要求。速度和高度跟踪令人满意。但是,TECS 能够以较低的超调和较低的控制活动跟踪参考值。
通常,使用各种方法(例如非线性控制和最佳控制)开发了导弹指导和控制系统。它们由指导和控制组成,并已单独开发。先前的研究是在指导循环与控制循环之间没有耦合的前提下进行的。在Ref [1]中,为导弹控制设计了三环结构,并通过线性二次调节器得出了控制增益。ref [2]使用后替式技术,并结合了状态重建和神经网络以增强鲁棒性。ref [3]使用非线性滑动模式控制(SMC)技术来避免聊天问题,并根据边界层厚度分析E ff ect。尽管先前研究的表现令人满意,但是设计和整合指导和控制是复杂而昂贵的。另外,由于快速的几何变化或系统的稳定性,控制器无法遵循加速命令。解决这些问题,是一种同时处理指导和控制的集成指导和控制方法(IGC)。参考。 [4,5]定义了导弹的动力学,并基于模型预测控制(MPC)进行了IGC研究。 参考。 [6]设计了SMC,以最大程度地减少零-E ff ort-ort-biss(ZEM),即已知目标的操纵加速度的前提。 参考。 [7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。[4,5]定义了导弹的动力学,并基于模型预测控制(MPC)进行了IGC研究。参考。 [6]设计了SMC,以最大程度地减少零-E ff ort-ort-biss(ZEM),即已知目标的操纵加速度的前提。 参考。 [7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。[6]设计了SMC,以最大程度地减少零-E ff ort-ort-biss(ZEM),即已知目标的操纵加速度的前提。参考。 [7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。[7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。 [8]考虑了观察目标状态的带状搜索者的视野。 参考。 [9]考虑了末端冲击角,以增强截距的E ff效果。 参考。 [10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。 尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。 为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。 DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。 这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。 Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。 参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[8]考虑了观察目标状态的带状搜索者的视野。参考。 [9]考虑了末端冲击角,以增强截距的E ff效果。 参考。 [10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。 尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。 为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。 DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。 这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。 Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。 参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[9]考虑了末端冲击角,以增强截距的E ff效果。参考。 [10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。 尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。 为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。 DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。 这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。 Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。 参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[12]试图使用2D运动学中的DDPG技术替换现有的指导技术。但是,基于DRL的研究并未在IGC系统中积极进行。在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。此方法通过将指导和控制纳入策略网络而进行。为此,导弹