建筑原则。我们开发了一个模块化系统,解决了任务基础的关键挑战:(i)(ii)开放世界人类环境中使用单眼相机进行视觉导航,并具有(iii)低频,高潜伏期感应和控制。不可靠的传感器流与嘈杂的本体感受相结合,在单眼环境中具有准确的深度和比例估计,具有挑战性。要解决(i),选择了依靠语义图像提示,而不是放弃3D度量几何估计,而是专注于2D图像空间中的遍历性估计。为了概括(ii)的不同场景和外观变化,使用了大规模数据集上预测的视觉特征,并在frodobots-2k数据的精选部分上进行了微调。由于硬件限制和延迟的不可预测性,(iii)很难直接解决。该系统的重点是处理次优路径找到引起的导航故障和较差的Trajectory跟踪,这是由于通信不良引起的。这是通过使用可靠的故障检测和恢复来增加导航管道来实现的。在高水平上,系统(图1)由受到启示,控制和故障检测和恢复模块组成。感知模块估计了从RGB输入的遍历性,并且还向下一个路点发出以自我为中心的方向向量。控制模块选择与Waypoint向量对齐并生成控制命令的基因差异可行的轨迹。感知。故障检测和恢复模块是对原始RGB进行的监督监视器,并预测从感知到检测失败的遍历性,覆盖控制模块以在必要时执行启发式恢复行为。鉴于需要在开放世界的人类环境中进行操作而没有由于单眼设置而没有可靠的深度感应,因此使用了基于场景语义的视觉遍历性预测。感知模块将RGB图像作为输入,并根据输入图像输出遍历性掩码,并在[0,1]中以遍历性得分为单位。在内部,快速的遍历性估计器会产生一个初始面膜,然后通过聚类启发式方法进一步进行后处理,以识别并强烈惩罚可能的障碍。估算器使用验证的恐龙视觉特征,可以对各种环境进行强有力的概括,并允许进行样品有效的训练和填充来适应新场景。在捕获不同地形上的偏好时,要训练轮式Frodobot配置的估计器,这是一种自动从Frodobots-2K
Pothayarapadu,埃卢鲁(地区),安得拉邦,印度 - 521212。摘要:夏季,热带地区阳光明媚的日子里经常会出现热浪,温度有时会达到 40 到 48 摄氏度。这些热浪可能会导致在户外工作的人中暑,这款雨伞原型旨在阻挡阳光并保护他们。这款雨伞原型设计为在阳光下工作的人提供风扇以达到降温效果。设计的雨伞使用安装在雨伞上方表面上的太阳能电池将太阳能转化为电能。这种能量用于运行风扇、灯以及为电池充电。当太阳强度较低时,电池可作为风扇、灯和移动充电端口的备用电源。用于这些功能的关键组件是电子控制模块,其中包括充电电路和放电电路。充电电路将太阳能电池的输出电压增加到所需电压以给电池充电。放电电路可以控制来自电池的电力以驱动直流电机风扇、LED 指示灯和充电端口。关键词:光伏电池、太阳能、OLED 灯、直流电机、电池、雨伞。
摘要:电力系统不可避免地要向可持续和以可再生能源为中心的电力系统转变,这一转变伴随着巨大的多样性和重大挑战。需要相应改变运行策略,采用更多的智能化和数字化,例如信息物理系统 (CPS),以实现所有系统层面(组件、单元、工厂、电网)的最佳、可靠和安全运行,并利用大数据。数字孪生 (DT) 是实现 CPS 的一种有前途的方法。本文全面回顾了它们在电力系统中的应用。回顾表明,现有的 DT 定义与未来电力系统对 DT 的要求之间存在差距。因此,通过使当前定义适应这些要求,引入了“数字孪生系统 (DTS)”的通用定义,最终提出一个多层次、可任意扩展的“数字孪生系统 (SDTS)”的想法。 SDTS 可通过开源框架实现,该框架可充当不同 DTS 之间的中央数据和通信接口,这些 DTS 可通过“报告模块”进行交互,并由“控制模块”(CM) 进行监管。本文讨论了涉及多个系统级别的示例应用场景,以说明所提出的 SDTS 概念的功能。
概述 提供词汇表以帮助读者理解不同的术语和短语。这些术语和短语以斜体显示。本手册中交替使用术语“无人居住”和“夜间退缩”,指代设备运行时间表中除有人居住时间段之外的所有时间段。本手册中交替使用术语“送风”和“排风”,指代通过排风口离开设备的调节空气。 Applied Air 的数字控制系统 AdaptAire 旨在以用户友好的包装为用户提供极致的设备性能和操作灵活性、适应性和可靠性。AdaptAire DDC 系统是 Applied Air 加热和冷却设备的标准组件。由于 AdaptAire 系统涵盖各种类型的设备,因此并非所有系统的功能都与所有设备相关。如果循环和非循环设备或直接燃烧或间接燃烧设备之间的功能相似但不同,则将单独解释该功能。 AdaptAire 可在系统网络上接受单个或多个设备。每个设备均可配备 Equipment Touch 触摸屏界面。Equipment Touch 通过 Equipment Touch 远程终端插头连接到设备控制模块。各个设备的操作参数可通过 Equipment Touch 输入。PC 也可连接到网络。这样可实现
主题 页码 变更摘要 2 产品线概述 3 NEMA 节省空间型接触器 3 NEMA 安全型接触器 4 NEMA 非组合型起动器 5 节能型接触器 6 产品选择 6 Bulletin 300 节能型接触器 6 Bulletin 305 节能型换向接触器 7 Bulletin 300S 节能型安全型接触器 10 附件 11 更新零件 18 规格 19 尺寸 00…3 型设备 20 尺寸 4…8 型设备 26 导体 34 辅助触点 36 寿命负载曲线 37 典型接线图 41 近似尺寸 43 尺寸 00…0 型接触器 43 尺寸 1 型接触器 44 尺寸 2 型接触器 46 尺寸 3 型接触器 49 尺寸 4…8 型接触器 51 标准接触器和起动器 56 产品选择 56 公告300 标准接触器 56 Bulletin 305/309 工厂组装可逆和非可逆启动器 57 Bulletin 305/309 用户组装可逆和非可逆启动器 58 附件 60 控制模块 61 更新零件 64 规格 66 典型接线图 75 寿命负载曲线 76 近似尺寸 81 其他资源 85
警告 1. 电磁辐射水平以伏特/米 (V/m) 为单位。每辆电动轮椅都能抵抗一定水平的电磁干扰。这被称为“抗扰度”。 2. 抗扰度越高,电磁干扰风险越低。据信,20 V/m 的抗扰度水平将保护电动轮椅用户免受更常见的无线电波源的影响。 3. 经测试,发现至少可抵抗 20 V/m 的常见配置是:Quickie QM-710 电动轮椅,右侧安装有 RNET 远程操纵杆系统,座椅宽度为 18 英寸,座椅深度为 18 英寸,Omni2 专业控制模块,电动倾斜座椅,悬臂扶手,电动倾斜,ELR ALR 电动腿托,服务模块,蓝牙鼠标移动器,I-device 鼠标移动器,输出模块,Gp 24 凝胶电池。 4. 所有售后输入设备选项(分类为呼吸控制、比例控制和/或可与此电动轮椅一起使用的开关控制)对其对不同类型 EMI 的免疫水平有未知影响。它们尚未使用 QM-710/715HD/720 和 RNET 控制系统进行专门测试:5. 已安装符合 ANSI/RESNA WC2/21 的通用配置所需的所有修改
摘要 - 镜头已成为微管外科领域中有希望的视觉解决方案。但是,手动重新定位构成了挑战,导致中断破坏了手术流。因此,出现了对免提外观控制控制的需求。本文介绍了一种基于位置的视觉控制控制方法,包括检测模块,混合跟踪模块和一个控制模块,该模块调整了机器人摄像头持有器以遵循外科手术工具。集成了混合模块,以跟踪和预测外科手术工具的未来位置,以最大程度地减少系统延迟。所提出的系统由带有眼睛的立体声相机的7度机器人操纵器组成。使用跟踪误差和中心误差指标评估了三种替代方法(卷积神经网络,粒子滤波器-PF,光流 - OF)的比较分析。结果显示,平均误差为9。84±0。08毫米缓慢运动(2。5 cm/s)和13。11±0。 39毫米快速运动(4 cm/s)。 最后,进行了一项用户研究,以调查所提出的系统是否有效地减少了用户的工作量与相机的手动重新定位相比。11±0。39毫米快速运动(4 cm/s)。最后,进行了一项用户研究,以调查所提出的系统是否有效地减少了用户的工作量与相机的手动重新定位相比。
摘要:负担得起且可访问的小规模生物反应器对研究界有很大的好处。在以前的工作中,设计的自动生物反应器系统旨在通过在线光学监测,搅拌和温度控制的最高30毫升刻度运行,并且该系统(称为Chi.bio)现在以通常比商用生物反应器少1-2个数量级的成本来营销。在这项工作中,我们通过通过硬件和软件修改实现连续的pH监视和控制,进一步扩展了Chi.bio系统的功能。为了进行硬件修改,我们采购了低成本,商业pH电路,并对Chi.bio头板进行了直接修改,以实现连续的pH监测。对于软件集成,我们引入了对Chi.bio反应器内测得的pH的闭环反馈控制,并将pH控制模块集成到现有的Chi.bio用户界面中。我们使用基准切割蛋白酶的合成聚酯,聚酯聚酯(PET)的小尺度解聚(PET)证明了pH对照的实用性,并将其与250 mL生物反应反反反应水解反应进行了比较。通过基础添加和产品释放曲线测量的宠物转换和速率的结果在统计上是等效的,而Chi.BIO系统允许相对于250 mL生物反应器设置所需的纯化内zyme的20倍降低。通过廉价的修改,在Chi.bio反应堆中进行pH控制的能力扩大了该系统中研究的生化反应和生物培养的潜在板岩,并且也可以适用于其他生物反应器平台。
摘要:光伏和风能系统等可再生能源越来越多地融入电网,这凸显了对可靠控制机制的需求,以缓解这些能源固有的间歇性。据巴西电网运营商 (ONS) 称,近年来可再生能源分布式系统 (RED) 出现了连锁断开现象,凸显了对稳健控制模型的需求。本文通过使用 WECC 通用模型验证光伏电站与电池储能系统 (BESS) 相结合的有功功率上升率控制 (PRRC) 函数来解决这一问题。所提出的模型在一段较长的分析期内经过了严格的验证,使用均方根误差 (RMSE) 和 R 平方 (R 2 ) 指标对连接点 (POI) 注入的有功功率、光伏有功功率和 BESS 充电状态 (SOC) 显示出良好的准确性,为中长期分析提供了宝贵的见解。爬升率控制模块在工厂功率控制器 (PPC) 中实现,利用西部电力协调委员会 (WECC) 开发的第二代可再生能源系统 (RES) 模型作为基础框架。我们使用 Anatem 软件进行了模拟,将结果与以 100 毫秒到 1000 毫秒为间隔从巴西配备 BESS 的光伏电站收集的实际数据进行了比较。所提出的模型经过了长期的严格验证,所呈现的结果基于两天的测量。用于表示此控制的正序模型表现出良好的准确性,这由均方根误差 (RMSE) 和 R 平方 (R 2 ) 等指标证实。此外,本文强调了在计算爬升率时准确考虑功率采样率的关键作用。
高可靠性要求发动机控制单元如今已出现在许多应用中,通常涉及安全关键考虑,要求在无法容忍意外行为的环境中具有高可预测性和高可靠性的操作!典型应用包括航空电子设备、汽车和货运站重型机械的操作。这些环境表现出高水平的安全敏感方面,其中 ECU 在紧急情况下无法以适当的方式运行可能对生命和/或财产构成威胁,从而证明增加测试成本是合理的。有许多例子表明 ECU 的安全关键操作很重要。对于航空电子设备,一个这样的例子是喷气式飞机发动机的全权数字电子控制器 (FADEC) 的设计验证。FADEC 实际上是喷气式发动机的大脑,控制飞机发动机性能的各个方面,同时提供完全冗余以确保安全关键可靠性。可以理解的是,政府对商用飞机 FADEC 模块测试有着严格的规定,要求在各种硬件故障条件下安全或受控运行。故障插入目前在汽车行业使用的一个示例是动力传动系控制模块 (PCM) 整体测试的一部分。PCM 是现代车辆中最复杂的电子控制单元之一,需要对其功能进行严格而全面的测试。PCM 故障的后果可能会对 X-by-Wire 应用(一个统称,指在车辆中添加电子系统以增强和取代以前通过机械和液压系统完成的任务,如制动或转向)产生更大的影响,这些测试方法的重要性日益增加。“故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。”由于当今 ECU 设备的精密性和复杂性很高,因此需要特殊的测试方法。ECU 测试的一个重要方面是将电气故障引入系统,模拟由于腐蚀、短路/开路以及因老化、损坏甚至安装错误而导致的其他电气故障而可能发生的各种情况。故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。这种测试方法不仅容易出现人为错误,而且耗时 - 而时间就是金钱。传统测试方法通常涉及手动将电缆插入和拔出配线架,这远非理想。Pickering Interfaces 故障插入 BRIC TM 交换解决方案针对 ECU 验证,为这些实际场景提供了更为复杂的测试方法。