囊性纤维化 (CF) 是由分布在 CFTR 基因位点约 25 万个碱基对上的多种突变引起的,其中至少有 382 个是致病突变 (CFTR2.org)。尽管现在有多种编辑工具可用于校正单个突变,但可以强烈支持一种更通用的基因插入方法,原则上能够校正几乎所有的 CFTR 突变。如果这种方法能够有效校正气道上皮的相关干细胞,那么它就有可能为肺部提供终身校正。在本文中,我们重点介绍了将基因有效插入气道上皮干细胞的几个要求。此外,我们重点关注转基因构建体和内源性 CFTR 位点的特定特征,这些特征会影响插入的基因序列是否会在气道上皮中产生强大且生理相关的 CFTR 功能水平。最后,我们考虑如何将体外基因插入方法应用于直接体内编辑。
通过减少零件数量和大量使用 COTS(包括可编程处理器),结合快速 COTS 插入方法,ALR-400 具有更高的可靠性、更低的生命周期成本和增强的可支持性。开放式架构提供模块化隔离标准接口,例如 MIL-STD-1553B、通信串行端口、USB、ARINC-429 和 100BaseT 快速以太网。雷达警告处理器可以承载防御辅助计算机 (DAC) 功能,从而实现控制和集成,
摘要射击(ST)状态对于基于正弦脉冲宽度调制(SPWM)的Z-Source逆变器的运行至关重要。然而,不可避免地插入射门状态会导致输出谐波,这极大地受到其分布的影响,尤其是对双极调制方案。通过定量分析,本文提出了单相Z-Source逆变器的输出谐波与射击状态之间的数学关系。提出了一种基于双倍转化的调整 - 转换方案,以估计使用不同的射击状态插入方法的输出谐波。在两种双极调制控制方法下使用200 W单相Z-Source转换器进行的模拟和硬件实验验证了所提出的理论的精度。定量分析将有助于设计Z-Source Converter的控制策略和调制方案。
摘要 – 硬件冗余是一种众所周知的容错技术,用于安全和任务关键型系统。然而,这种技术的强化效率依赖于多数表决电路的稳健性。本摘要提供了用于辐射环境(例如太空任务)的多数表决架构的设计探索。提出了一种基于信号概率的特定应用单事件瞬态 (SET) 特性,以优化三模冗余 (TMR) 块插入方法。结果表明,复杂门架构的 SET 横截面表现出较低的输入依赖性,而对于基于 NOR/NAND 的架构,由于逻辑掩蔽效应,观察到更高的依赖性。此外,与其他架构不同,NAND 表决器显示,随着信号概率的增加,SET 率会降低。考虑到信号概率 p = 0.1、p = 0.5 和 p = 0.9,两个分析轨道的最佳设计分别是 NOR、CMOS1 和 NAND 表决器。
我们提出了一个框架,以模拟硬质探针的动力学,例如在量子计算机上的热,强耦合的夸克 - 胶状等离子体(QGP)中的重型夸克或喷气机的动力学。QGP中的硬探针可以视为由Lindblad方程在马尔可夫极限下控制的开放量子系统。但是,由于计算成本较大,大多数当前的现象学计算在QGP中进化的硬探针的现象学计算使用量子演化的半经典近似值。quantum-tum计算可以减轻这些成本,并具有对经典技术的指数加速进行完全量子处理的潜力。我们报告了在IBM Q量子设备上简化的框架演示,并应用随机身份插入方法(RIIM)来考虑CNOT去极化噪声,此外测量误差缓解。我们的工作证明了在当前和近期量子设备上模拟开放量子系统的可行性,这与核物理,量子信息和其他领域的应用广泛相关。
摘要 – 硬件冗余是一种众所周知的容错技术,用于安全和任务关键型系统。然而,这种技术的强化效率依赖于多数表决电路的稳健性。本摘要提供了用于辐射环境(例如太空任务)的多数表决架构的设计探索。提出了一种基于信号概率的特定应用单事件瞬态 (SET) 特性,以优化三模冗余 (TMR) 块插入方法。结果表明,复杂门架构的 SET 横截面表现出较低的输入依赖性,而对于基于 NOR/NAND 的架构,由于逻辑掩蔽效应,观察到更高的依赖性。此外,与其他架构不同,NAND 表决器显示,随着信号概率的增加,SET 率会降低。考虑到信号概率 p = 0.1、p = 0.5 和 p = 0.9,两个分析轨道的最佳设计分别是 NOR、CMOS1 和 NAND 表决器。
摘要 基因治疗的理想工具是能够在人类基因组的预定位点上实现有效的基因整合。我们在此展示了睡美人 (SB) 转座子与 CRISPR/Cas9 系统的组件相结合而实现的偏向性全基因组整合。我们提供概念证明,通过将 SB 与催化失活的 Cas9 (dCas9) 融合并提供针对人类 Alu 逆转录转座子的单向导 RNA (sgRNA),可以影响 SB 的靶位选择。转座子整合的富集依赖于 sgRNA,并且以不对称模式发生,偏向于 sgRNA 靶标下游相对较窄的 300 bp 窗口内的位点。我们的数据表明,CRISPR/Cas9 指定的靶向机制迫使整合到基因组区域,而这些区域原本是 SB 转座的不良靶标。未来对该技术的改进可能会允许开发用于精确基因工程的特定基因插入方法。
水平基因转移(HGT)是核进化的基本驱动力,促进了新的特征并适应新环境。尽管其重要性,但很少有系统地比较用于推断HGT的方法,这在我们对它们的相对优势和局限性的理解上留下了差距。验证HGT推理方法是由于缺乏可以证实历史转移事件的基因组化石记录而面临的质疑。没有经验黄金标准,通常会验证新的推理方法的模拟数据;但是,这些模拟可能无法捕获生物学复杂性,并且经常嵌入推理方法本身中使用的相同假设。在这里,我们利用HGT事件的趋势涉及多个相邻的基因来评估不同HGT插入方法的准确性。我们表明,分析基因树木之间基因的存在/不存在模式的方法始终优于基于基因树种树的重新征服的方法。我们的发现挑战了显式系统发育和解方法优于模拟者隐式方法的普遍假设。通过提供全面的台式标记,我们提供了选择适当方法的实用建议,并指示了未来方法论进步的途径。
为了解决这些问题,这项工作提出了一种基于机器学习的方法,该方法可以结合来自各种遥感测量值的数据,并使用基于集合方法的分类器进行降雨估算。建议的方法在计算上比插值技术便宜,允许集成异质数据源,并在不可用的RGS的情况下提供了准确的降雨估计。它还利用了RG的高定量精度以及雷达和卫星保证的空间模式识别。所提出的方法提供了不可用的RG的降雨量的准确估计值,可以整合利用RGS的高定量精度和通过雷达和卫星确保的空间模式识别的异质数据源的整合,并且比插入方法的计算范围更低。在有关意大利地区Calabria的实际数据上进行的实验结果,与Kriging与Kriging与外部漂移(KED)相比,在降雨估计领域中得到了公认的方法,这在检测概率(0.58 versus versus versus versus误差)和均值误差(0.11 vers 0.15 vers 0.15)方面显示出显着改善。
摘要。外延石墨烯中的金属插入使近端诱导的超导性和修饰的量子传输特性的出现。然而,设备制造中的挑战阻碍了插入石墨烯的系统运输研究,包括加工引起的除法和标准光刻技术下的不稳定性。在这里,我们介绍了一种光刻控制的插入方法,该方法可实现可扩展的镀批镀金式准燃料及双层石墨烯(QFBLG)霍尔棒设备的可扩展制造。通过将光刻结构与随后通过专用插入通道进行插入,该方法可确保对金属掺入的精确控制,同时保持设备完整性。磁磁运输测量值揭示了临界温度𝑇𝑇≈3.5k的超导性,并且横向电阻的出现,包括对称和反对称场成分,这归因于对称内部野体组件,归因于非均匀的电流。这些结果建立了用于插入石墨烯设备的高级制造方法,从而提供了对范德华异质结构中约有2D超导性和新兴电子相的系统研究的访问。