里奥格兰德州的东北地区,托拉曼达河(SRT)的河流盆地,在塞拉·杰拉尔(Serra Geral)和广泛的沿海平原上脱颖而出。该地区淡水鱼的多样性超过了23个家庭中分布的100种。UFRGS鱼类学实验室研究小组已经研究了这些物种的分类学和生物学的几个方面,其中包括一个“ DNA条形码”项目,该项目旨在建立线粒体石质C氧化酶(IOC)(IOC)(IOC)(IOC)SRT库。DNA条形码是一种在科学中广泛使用的工具,用于根据从人群中个体的组织样本获得的遗传序列区分物种。这项研究的目标包括对“ DNA条形码”项目中使用的证明标本的摄影目录的审查和阐述,包括生命中的鱼类图像并保存在酒精中。该方法包括搜索乌尔夫犬动物学系的鱼类收藏中包含证词标本的地段和路易斯·罗伯托·马拉巴巴教授的个人摄影档案。311批次和574个标本保存在代表与“ DNA条形码”项目有关的98种物种中。从此列表中,旨在拍摄每种至少三个代金券的背面,外侧和腹侧视图的标准化照片。在生命中寻找凭证的照片处于早期阶段,但是已经找到了26个摄影记录,后来将与项目物种相关联并编辑以包含在目录中。
大脑功能连通性与结构连通性之间的关系引起了神经科学界的广泛关注,通常使用数学建模推断出。在许多建模方法中,光谱图模型(SGM)具有独特性,因为它具有大脑振荡的宽带频率光谱的封闭形式解,仅需要全球生物物理解释的参数。虽然SGM在参数方面是简单的,但SGM参数的确定是非平凡的。先前在SGM上的工作通过计算密集型退火算法确定参数,该算法仅提供一个点估计值,而没有置信区间的参数估计。为了填补此空白,我们结合了基于仿真的推理(SBI)算法,并开发了一种贝叶斯程序来推断SGM参数的后验分布。此外,使用SBI大大减轻了推断SGM参数的计算负担。我们评估了健康受试者的静止状态磁脑摄影记录上提出的SBI-SGM框架,并表明所提出的程序在恢复功率光谱和Alpha频带的空间分布方面具有与退火算法相似的性能。此外,我们还分析了参数之间的相关性及其与后验分布之间的不确定性,而后验分布无法通过退火推断进行。这些分析对SGM生物物理参数之间的相互作用提供了更丰富的理解。通常,基于模拟的贝叶斯推理的使用可以实现生成模型参数不确定性的强大而有效的计算,并可能为在临床翻译应用中使用生成模型铺平道路。
一个很好的例子是,世界标准化地震仪网络 (WWSSN) 是第一个使全球地震学成为定量预测科学的社区仪器。在我作为一名新研究生首次进行地震学研究的经历中,美国西部 WWSSN 站的地震图非常重要。这些图像中的许多都是个人标志,展示了应该如何看待大地震的体波和表面波。通常,我们使用来自微缩胶片的大型扩展地震图副本,但偶尔我们会在发生重大地震后向地震站操作员索取数据,从而获得原始图像的一对一照片副本。WWSSN 数据对于我们的波形建模者小组来说是“黄金”,因为这些数据来自时间准确且具有标准校准仪器响应的地震仪器。首次,我们可以通过定量地震学比较某个区域或整个地球的波形振幅、形状和时间变化,从而推断震源和传播介质的特征。WWSSN 的数据在 20 世纪 60 年代板块构造范式的形成中发挥了关键作用。可以选取可靠的 P 波和 S 波行进时间来定位远震距离内的数百次地震,并且可以使用良好的初动来推断断层面解,从而阐明地球板块的应力状况和几何形状。在使用这个精致的模拟数据集的过程中,很明显,地震图定量分析的进一步发展需要数字数据,最终形成我们今天拥有的数字全球地震网络。按照现代数字标准,WWSSN 是一个动态范围非常低的系统。正如 Jon Peterson 和 Bob Hutt 在本报告中指出的那样,要拥有与当今记录器相当的模拟 WWSSN 系统,需要一个宽度为 17 公里 (km) 的摄影记录鼓,振镜和鼓之间的距离为 54 公里!即便如此,仍有许多“最佳点”距离,可以充分观察到各种规模的地震。今天,整个地球的数字地震观测数量惊人,因此人们可能想知道模拟数据在现代地震问题中起着什么作用。答案很简单。地震学是一个非常年轻的科学领域,历史数据集是了解过去的宝贵资源。地震危险评估取决于对历史地震源参数的分析。Chuck Langston 2014 年 3 月 28 日模拟数据可能是过去地震中唯一可用的数据,这些地震发生在以前建筑环境未开发的区域。模拟时代之后发现的新现象,例如“慢”地震、非火山震颤或俯冲带中的间歇性滑动,可以通过查看历史 WWSSN 数据来审查这些信号与以前大地震发生之间的关系。未来发现的新信号可能会记录在模拟 WWSSN 档案中。任何进行过地震实验的人都知道,收集好的数据非常困难,如果由于仪器故障或收集错误而丢失数据,那将是一场悲剧。WWSSN 是一项宏大的实验,它从全球大约 100 个站点生成了前所未有的高质量连续数据集合。仅凭这一点,它就成为地震学最成功的案例之一。使用这些数据进行的波形研究推动了该领域的各方面发展,并激发了当今大多数(如果不是全部的话)大规模地震实验和网络。这些数据对于历史和科学原因都很重要。
doi:https://doi.org/10.22271/j.ento.2024.v12.i2b.9299摘要摘要Chhindwara的Dharam Tekri的蝴蝶多样性的研究提供了有关本地生态系统的见解,并为有效的保护工作提供了基础。蝴蝶作为多种鳞翅目昆虫,在生态平衡中起着至关重要的作用,并作为环境指标。这项研究旨在通过随机调查和摄影记录蝴蝶物种及其在Dharam Tekri中的地位。它发现了来自五个家庭的44种蝴蝶种,其中若虫最丰富。这些发现有助于了解生态系统,保护和促进生态旅游和环境教育。他们为未来的研究和保护计划提供了宝贵的信息。该研究的结果对蝴蝶保护具有更广泛的影响,为地方,地区和国家一级的政策制定和保护计划提供了信息。关键字:蝴蝶,多样性,花蜜,授粉,属于鳞翅目订单的蝴蝶蝴蝶以其美丽和多样性而闻名,使其成为最有吸引力的昆虫群体之一。他们在生态系统中的存在表示动植物,动物群和他们的栖息地之间的微妙平衡。蝴蝶在维持生态平衡并充当环境健康的指标中起着至关重要的作用(Thomas 2005; Bonebrake等,2010)[14,3]。它们还通过授粉和与植物和其他生物的相互作用对生态系统的功能做出了重大贡献(Tiple等人2011; Tiple 2018)[15,16]。2007)[4]。2007)[4]。通过以花蜜为食,并无意中将花粉从花朵转移到花朵,蝴蝶促进了植物的繁殖,对于维持植物生物多样性和支持食物网络至关重要。此外,蝴蝶还可以作为其他动物(包括鸟类和哺乳动物)的食物来源,从而有助于整体生态平衡。在全球范围内,有17,200种蝴蝶的有记录的物种,印度贡献了1504种(Gaonkar 1996; Kunte 2000; Kunte 2000; Tiple,2011)[7,12,15]。在中央邦和恰蒂斯加尔邦(Chhattisgarh State)中,已经记录了174种蝴蝶动物(Chandra等人Chhindwara区有38种属于六个家庭(Bhowate and Kumar,2020)[2]。然而,环境变化,例如栖息地丧失,气候变化,污染和使用农药对蝴蝶的多样性和分布有害,因为它们对这些因素敏感。研究蝴蝶多样性提供了有关环境变化的影响和有助于制定保护和恢复策略的影响的见解。因此,理解和保存蝴蝶多样性对于保护这些昆虫和生态系统的整体健康至关重要。该研究的目的是记录不同蝴蝶物种及其在研究区域内及其周围的状态。收集的数据将有助于创建物种清单和分配图,这有助于我们对Dharam Tekri的蝴蝶多样性的理解。此外,它将作为在该领域进行进一步研究的研究人员全球参考。材料和方法研究区域和调查方法:研究区域是Dharam Tekri,位于Madhya Pradesh Chhindwara区的Ganesh殖民地,位于22°4'38“ 38” N和78°57'5” 5“ E. E. E. E. E.这个丘陵地区丰富的绿色植被,并在绿色的植被中丰富,并为各种各样的叶子提供了叶子范围。