自然深层溶剂(NADE)代表了对基于石油的溶剂的环保替代品,因此,它们是一个主要的研究领域,旨在减少工业排放,从而期待更绿色的过程。此外,基于β循环的聚合物(βCD)的聚合物是一类材料,用于在许多制药,食品和环境应用中广泛利用用于控制药物的释放和不良物质的吸收。但是,大多数基于βCD的聚合物的合成都需要使用有机溶剂或有毒反应物,因此描述了一种获得此类材料类别的绿色方式,可以使过程更具可持续性,并且适用于环保友好的扩展。在这项工作中,使用1:1、1:1:1:1:1:1:1:2 mol:mol胆碱/柠檬酸/柠檬酸nades的含量,以从15k da到19k da的分子量的水溶性聚合物的合成。所得聚合物所显示的特殊结构使后者可以固化成基于βCD的纳米 - 结构,从而将其结构从水溶液转变为交联。最终,所获得的基于βCD的纳米杂质显示出与Quaternary铵函数的存在有关的正ζ电位值。这种阳性电荷导致依赖于为NADE制备选择的胆碱氯/柠檬酸摩尔比,并通过吸收和用带电的探针分子的释放研究进一步证实。
电导率和柔性超级电容器中电极活性材料的低电阻不能被夸大。在超级电容器的领域中,电极材料具有至关重要的意义,持续的效果致力于开发新型材料,例如石墨烯,MXENE,金属有机框架(MOF)等,旨在增强设备性能。MOF材料是新型材料,由金属簇和配体组成。先前的研究表明,超级电容器可以直接利用该材料作为电极材料。4 - 6中,电极和电解质之间的接触可以通过材料中的多孔结构来促进,从而产生双电动层效应,金属离子可以与electrolete进行某些氧化还原反应,从而导致假性含量。7,8在先前的作品中,Ni-Mof,9,10 Co-Mof,11,12 Fe-Mof,13和Ni/Comof(14,15)在其他工作中显示出很大的潜力作为超级电容器电极材料。中,由于其较高的电化学活性,双重动物的Ni/ComoF具有比单个MOF更高的电容和更有希望的性能。我们还准备了CO/NI-MOF粉末材料,并研究了CO和Ni的摩尔比以对电化学性能的影响。16准备好的圆锥体0.5 -mof
在工作中研究了2,2' - [乙烷-1,2dylbis(oxy)]二苯甲甲醛(N),硫代甲苯二硫酸盐配体(W)及其金属配合物在工作中。通过在DMF培养基中反应水杨醛和碳酸钠,在两个阶段完成合成反应,然后加入1,2-二溴乙烷当量。通过混合氢氮和CS 2,合成了W。配体(W)是通过将乙醇金属氯化物溶液添加到金属离子集合中产生的。之后,将配体N引入并溶解。在(0.5 m n:w)摩尔比以创建五种新型化合物的DMF中。使用物理化学技术(FT-IR,电子光谱分析,质量,¹-NMR和13 C-NMR光谱,元素分析,磁敏感性和摩尔浓度),验证合成化合物的孤立组成实体(电导率)。基于表征数据,形成了具有化学式[MLCL 2]的八面体化合物。当M = CO(LL),Ni(LL),Cu(LL),Zn(LL)和CD(LL)(LL)时,将标题成分(配体和复合物)的抗菌作用评估为抗氧化剂。结果表明,相对于L.
DOI: https://dx.doi.org/10.30919/es1260 Polymerization Dynamics of Zwitterionic Monomers with Polyacrylamide for Enhanced Oil Recovery Gulim Imekova, 1, 2 Damir Karimov, 3 Nurxat Nuraje 3 and Zhexenbek Toktarbay 1,* Abstract In this paper, the synthesis of zwitterionic详细研究了用于增强石油回收(EOR)的共聚物。通过自由基共聚合合成共聚物。不同的摩尔比(2:98,10:90,20:80,30:70)的s翼sulfobetaine-n-(3-二甲基氨基)丙烯酰胺(P(SB-DMAPMA))与丙烯酰胺(AM)共聚。导致以核磁共振(NMR)和傅立叶变换红外光谱(FTIR)为特征的共聚物。用静态光散射方法测量共聚物的分子量。使用三种方法计算单体的反应性比:Fineman-Ross,Kelen Tudos和Mayo-Lewis。该研究还讨论了纯净水和纯净水中的际离子共聚物和流变特性的热稳定性,并在具有不同电荷的高含量条件下。通过流变测量分析添加不同盐后的粘度增加,分子结构的图像是通过传输电子显微镜(TEM)拍摄的。这项研究的发现对于提高EOR过程的效率很有用,为更先进的石油回收技术铺平了道路。
摘要:当用聚合物基材料补充或替换组织或器官时,生物功能性和生物相容性至关重要。在这里,我们制备了基于硬脂基甲基丙烯酸酯 (SM) 和乙烯基吡咯烷酮 (VP) 的生物相容性 SM- x 网络,它们具有自修复和形状记忆特性。摩尔比在 10% 到 90% 之间逐渐从亲水单元变为疏水单元,以获得满足各种潜在生物应用要求的凝胶。除了具有随时间变化的粘弹性之外,凝胶的机械性能还可以通过引入反应介质的 SM 量来控制。低 SM 含量的凝胶不能完全恢复到其初始模量值,而浓度 ≥ 60% 时形成的凝胶由于动态疏水相互作用而完全可逆,这对自修复行为也很有效。此外,所有网络都可以在几秒钟内完全恢复其永久形状。接种在 SM-x 水凝胶上的人体皮肤成纤维细胞的活力与结构的水接触角密切相关,在所有 x 值下均超过 82%。根据这些发现,SM-x 凝胶样品的广泛特性可能显示出满足各种生物医学应用需求的巨大潜力。关键词:自修复、形状记忆、硬脂基甲基丙烯酸酯、乙烯基吡咯烷酮、生物相容性
摘要:在这项工作中,我们专注于基于PLA的电纺纤维,Efibers的生物活性和抗菌行为,并用MGO和MG(OH)2纳米颗粒(NPS)增强。在形态,FTIR,XRD和视觉外观方面遵循了基于PLA的efiber的演变。生物活性是根据28天后的羟基磷灰石生长(被认为是T28)浸入模拟体液中的T28。特别是,在两个系统中浸入T14后,浸入SBF后的生物矿化过程。通过增加两个NP的量来增加沉淀晶体的数量。还以T28浸入SBF后的CA/P摩尔比,表明沉淀的晶体的化学成分,表明在两种增强的e纤维表面上都存在羟基磷灰石。此外,观察到基于PLA的efiber的平均直径的降低,在浸入SBF的28天后,纯PLA和PLA的平均直径分别达到了46%和60%的最大降低46%和60%。在基于PLA的电纺纤维中MGO和MG(OH)2 NP的抗菌行为对针对大肠杆菌,大肠杆菌,作为革兰氏阴性细菌,以及金黄色葡萄球菌,金黄色葡萄球菌,作为对革兰氏蛋白抗体的细菌,均具有革兰氏蛋白抗体的活性。最高浓度的MGO和MG(OH)2 NP的2%和34±6%。
糖胺聚糖(GAG)是细胞表面和细胞外基质的重要组成部分,在该基质中,它们通过与各种蛋白质的相互作用而参与了几个细胞过程。为成功的组织再生,以类似方式开发出适当的矩阵支持细胞的生物学活性,仍然具有挑战性。在这种情况下,本研究旨在设计一种热敏性多糖,该多糖可以进一步用作组织工程应用的水凝胶。为此,将具有GAG模拟特性的海洋细菌外多糖(EPS)与热敏感聚合物,聚(N-异丙基丙烯酰胺)(PNIPAM)接枝。通过不同的EPS/PNIPAM摩尔比和PNIPAM的分子量获得了八种接枝多糖。使用多技术,实验方法确定其物理化学特征及其热敏性能。并行,分子动力学和蒙特卡洛模拟在两个不同的尺度上分别阐明,分别阐明了接枝地狱链的分子构象,以及它们在Percolation附近的Sol-gel Transcolation中形成无限网络的能力,这是水凝胶形成中必要的条件。从这项研究中提出,热敏化地狱已成功开发,并且将进一步评估其在组织再生中作为水凝胶支架的潜在用途。
活性氧和氮物质 (RONS) 的积累会导致细胞损伤甚至细胞死亡。RONS 是短寿命物质,因此难以直接、精确和实时测量。生物相关的 RONS 水平在 nM-µM 范围内;因此,需要高灵敏度的 RONS 探针。我们之前使用了对 H 2 O 2 灵敏度为 mM 的混合金核银壳纳米粒子。这些粒子通过光谱偏移报告了 RONS 的存在,而光谱偏移可以通过光声成像轻松量化。在这里,我们使用卤化物掺杂来调整这些材料的电化学性质,以更好地匹配 RONS 的氧化电位。这项工作描述了这些 AgI 涂层金纳米棒 (AgI/AuNR) 的合成、表征和应用。I:Ag 摩尔比、pH 值和初始 Ag 壳厚度都经过优化,以获得良好的 RONS 检测限。卤化物掺杂使银的还原电位从 E 0 Ag = 0.80 V 降低至 E 0 AgI = − 0.15 V,导致 H 2 O 2 增加 1000 倍,ONOO − 灵敏度增加 100,000 倍。AgI/AuNR 系统的蚀刻速度也比未掺杂的 Ag/AuNR 快 45 倍。AgI/AuNR 可轻松报告已建立细胞系以及小鼠模型中内源性产生的 RONS。
活性氧和氮物质 (RONS) 的积累会导致细胞损伤甚至细胞死亡。RONS 是短寿命物质,因此难以直接、精确和实时测量。生物相关的 RONS 水平在 nM-µM 范围内;因此,需要高灵敏度的 RONS 探针。我们之前使用了对 H 2 O 2 灵敏度为 mM 的混合金核银壳纳米粒子。这些粒子通过光谱偏移报告了 RONS 的存在,而光谱偏移可以通过光声成像轻松量化。在这里,我们使用卤化物掺杂来调整这些材料的电化学性质,以更好地匹配 RONS 的氧化电位。这项工作描述了这些 AgI 涂层金纳米棒 (AgI/AuNR) 的合成、表征和应用。I:Ag 摩尔比、pH 值和初始 Ag 壳厚度都经过优化,以获得良好的 RONS 检测限。卤化物掺杂使银的还原电位从 E 0 Ag = 0.80 V 降低至 E 0 AgI = − 0.15 V,导致 H 2 O 2 增加 1000 倍,ONOO − 灵敏度增加 100,000 倍。AgI/AuNR 系统的蚀刻速度也比未掺杂的 Ag/AuNR 快 45 倍。AgI/AuNR 可轻松报告已建立细胞系以及小鼠模型中内源性产生的 RONS。
摘要:铁离子作为传统的高效芬顿反应催化剂,与过氧化氢反应产生羟基自由基,从而在废水中降解有机污染物。然而,在水溶液中,铁离子的化学稳定性较差,因此很难从反应培养基中恢复。我们提出,它们与双嗜嗜性块共聚物的络合可以导致形成具有改善化学和胶体稳定性的纳米催化剂。以不同的摩尔比与双嗜嗜性嵌段共聚物的溶液的溶液(即聚(氧化乙烷)-Block-Poly(丙烯酸)(丙烯酸)形成胶体结构的溶液,添加了铁离子。自发地形成高度单分散胶束,其水动力直径约为25 nm。通过结合多种技术,可以实现核心 - 壳体结构的精确描述。这些结构在3-7的pH范围内化学稳定,并通过萘酚蓝色黑色的降解成功地用作光纤维催化剂。与传统的同质芬顿反应相比,这些胶体结构具有改善的化学和胶体稳定性以及更高的可回收性。关键字:杂交Polyion复合物,胶束,块共聚物,照片芬顿,纳米催化剂,胶体