单向量子中继器通过量子纠错码抵消丢失和操作错误,可以确保量子网络中快速可靠的量子比特传输。至关重要的是,这种中继器的资源需求(例如,每个中继器节点的量子比特数和量子纠错操作的复杂性)必须保持在最低水平,以便在不久的将来实现。为此,我们提出了一种单向量子中继器,它使用代码连接以资源高效的方式针对通信信道中的丢失和操作错误率。具体来说,我们将树簇代码视为内部容错代码,与外部 5 量子比特代码连接,以防止泡利错误。采用基于标志的稳定器测量,我们表明,通过散布每个专门用于抑制丢失或操作错误的中继器节点,可以以最小的资源开销连接长达 10,000 公里的洲际距离。我们的工作证明了定制的纠错码如何显著降低长距离量子通信的实验要求。
DOI 10.2478/v10040-008-0066-y 空中交通中的操作错误 Wojciech Chmura 1、Marek Malarski 2 (1)波兰空中航行服务局(2)华沙理工大学,交通学院电子邮件:(1)chmura.w@wp.pl,(2)mma@it.pw.edu.pl 摘要。根据历史数据计算得出的表示空中交通中允许发生事件(特别是事故)数量的强制性值,称为目标安全水平 - TLS,目前仅对事故有效,相当于每飞行小时发生 1.55*10 -8 起事故。除非之前计算出的 TLS,否则该值是可靠的,并且该方程本身可能有助于通过将员工的当前绩效特征代入其中来监控当前的安全级别 (CLS)。关键词:空中交通管制 操作失误 摘要:根据历史数据确定空中交通安全的适用级别。航空事故安全极限水平(TLS)的设定值为每飞行小时发生1.55*10 -8起事故。必须监控当前的 CLS 安全级别并将其保持在 TLS 阈值以下。关键词:空中交通管制,操作失误
� 设计包括计算机在内的设备和系统,使其更易于使用,并且不太可能导致操作错误——这对于高压力和安全关键操作(例如控制室)尤其重要。� 设计任务和工作,使其有效,并考虑到人类需求,例如休息时间和合理的轮班模式,以及其他因素,例如工作本身的内在回报。� 设计设备和工作安排,以改善工作姿势并减轻身体负担,从而减少重复性劳损/工作相关上肢障碍的情况。� 信息设计,使手册、标志和显示器的解释和使用更容易,更不容易出错。� 设计培训安排,以涵盖相关工作的所有重要方面,并考虑到人类的学习要求。� 军事和航天设备和系统的设计——对人类要求的极端情况。� 设计工作环境,包括照明和供暖,以满足用户的需求和执行的任务。必要时,设计用于工作和恶劣环境的个人防护设备。� 在发展中国家,即使是相当基本的技术的可接受性和有效性也可以得到显著提高。
正如《空中交通管理总体规划》(SESAR,2015 年)中所述,重大变化将影响未来欧洲空中交通的处理方式。而在 20 年内,空中交通量应该会翻一番,同时地面和空中的延误应该会减少 30%。总体安全性也应该得到改善。与使用标准航路不同,实施 4D 航迹将确保航班“尽可能长时间地沿着几乎不受限制的最佳航迹飞行 [...] 以非常准确地满足指定点的到达时间”(SKYbrary,2017a)。为了能够处理这些创新,空中交通管制员 (ATCO) 需要适当的工具,尤其是用于可视化 4D 航迹的工具。开发安全关键工作环境领域的软件非常具有挑战性,因为操作错误可能会导致致命事故。有必要尽可能密切地与用户组合作,了解他们的需求,并开发出有机会被这些专家用户接受的解决方案。在研究项目 VAST(虚拟空域和塔台)中,将探索可视化和声音化复杂空中交通场景的新概念。该团队遵循以用户为中心的设计流程(Nor-man,2013),并开发了三个低保真原型,以便尽早与 ATCO 一起对其进行评估
操作与监控(OM)界面是核电系统与操作员之间的数字媒介。在操作员与计算机之间的 OM 任务中,OM 界面的认知负荷对操作员的操作错误有重要影响。构建了 OM 界面的认知负荷模型,分析了 OM 界面认知负荷的构成及影响因素,研究了核电系统认知负荷的应对策略与方法。提出了一种基于眼动的实验方法来测量 OM 界面的认知负荷。以 20 名受试者和核电系统模拟器的典型 OM 界面为实验案例。根据实验结果对 OM 界面进行了优化。并通过对原始 OM 界面和优化后的 OM 界面的结果比较,表明该认知负荷模型和提出的方法对减少认知负荷、提高 OM 任务的交互效率具有重要的贡献。© 2019 韩国核学会,由 Elsevier Korea LLC 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
优点和功能•在测试准备和测试性能期间,Inspectorx中的动画和预定义应用程序支持操作员。这减少了操作错误,并确保短期培训期。•受过训练的专业人员,而不仅仅是科学和研究员工,可以操作该工具并评估结果,从而降低了测试的总体成本。•与市场上的任何其他仪器相比,最简单,最强大的尖端变化,而无需再现:校准数据明确分配给了测量提示。•出色的动力学模块可以特别准确,快速校准测量尖端以及涂料所需的深度分辨测量值。•带有18百万像素颜色相机的光学元件允许4倍缩放,而不会损害分辨率。这涵盖了多达三个经典左轮手枪镜头的放大范围,从而消除了更换镜头的需求。•由于自动拟合功能和测量数据分析的范围选择,对图层的测量值非常容易评估。•Zwickroell根据ISO 14577:2015在Inspectorx中实施了标准符合标准的径向位移校正。•刚性轴的刚性框架设计正好在运动轴中(无倾斜矩)•光学和凹痕器之间的高定位精度,大于1µm。
摘要 —本文对量子通信网络中可扩展性挑战和机遇进行了全面研究,目的是确定对网络影响最大的参数以及扩展网络时出现的趋势。我们设计了量子网络的模拟,该网络由由捕获离子量子比特组成的路由器节点组成,并由贝尔状态测量 (BSM) 节点形式的量子中继器分隔。这样的网络有望安全地共享量子信息并实现高功率分布式量子计算。尽管前景光明,但量子网络仍因噪声和操作错误而遇到可扩展性问题。通过模块化方法,我们的研究旨在克服这些挑战,重点关注扩展节点数和分离距离的影响,同时监测由退相干效应引起的低质量通信。我们的目标是找出网络中对于推进可扩展、大规模量子计算系统至关重要的关键特征。我们的研究结果强调了几个网络参数对可扩展性的影响,突出了对中继器数量和产生的纠缠质量之间权衡的关键见解。本文为未来探索优化量子网络设计和协议奠定了基础。
创建比常规方法效果更好的量子算法(例如大整数分解)使量子计算成为现代物理学的重点。在物理构建量子计算的各种方法中,Cirac 和 Zoller [ 1 ] 提出的离子阱方法尤为有前景。离子阱的有效性已通过大量实验得到证明,证实了其在实际量子计算中的潜力。离子阱是一种利用电场和/或磁场将带电粒子(离子)限制在特定空间区域的装置。这种限制允许对离子进行操纵和分析。事实上,精确控制单个离子的能力可以实现精确的量子操作,而捕获离子的长相干时间可确保复杂计算期间的稳定性 [ 2 ]。离子阱系统的可扩展性进一步使得构建更大的量子系统成为可能,高保真量子门可最大程度地减少操作错误。此外,离子阱有助于产生纠缠态,这对于量子通信和分布式计算至关重要。在这种情况下,离子阱中的势通常用谐振子来近似,这为分析离子的运动和相互作用提供了一个完善的框架,这对于实现量子门和其他必要的操作至关重要 [3]。阱内离子之间的相互作用(包括光学或电磁谐振器中的离子)可以建模为耦合的谐振子,这对于控制量子态和执行纠缠等量子操作至关重要。这些相互作用可以进入各种耦合状态——弱、强和超强——每一种耦合状态都在提高量子计算机的性能和可扩展性方面发挥着关键作用 [4,5]。在量子计算领域,特别是在囚禁离子系统的哈密顿动力学框架内,对各种量子度量的细致理解至关重要。例如,纠缠熵测量子系统之间的量子相关性,指示共享的信息量。这对于量子算法和协议(如纠错和加密)非常重要。另一个指标是计算复杂度,它评估量子计算所需的资源,包括量子比特的数量和量子电路的深度。这反映了量子操作的难度和算法的效率。高纠缠熵通常会导致计算复杂度增加,因为维持纠缠需要更复杂、更深的电路。另一方面,通过按顺序排列量子门,可以形成高效的量子算法,使量子计算机能够解决超出传统计算机能力的问题 1 。量子门与波函数相互作用的研究很重要;将参考状态 | ψ R ⟩ 转换为目标状态 | ψ T ⟩ 需要应用一个幺正变换 U ,这是通过一系列通用门实现的。优化这些门序列至关重要,因为通往同一目标状态的可能路径是无限的。电路深度,即连续操作的数量,与计算复杂度有关。