1 伊朗德黑兰基础科学研究所 (IPM) 计算机科学学院 2 伊朗德黑兰基础科学研究所 (IPM) 脑工程研究中心 3 伊朗德黑兰沙希德贝赫什提大学物理系伊本西纳多学科实验室 4 伊朗德黑兰沙希德贝赫什提大学物理系 5 伊朗德黑兰伊朗科学技术研究组织 (IROST) 电气工程与信息技术系 6 伊朗德黑兰沙希德贝赫什提大学计算机科学与工程系 7 伊朗德黑兰沙希德贝赫什提医科与健康服务大学国家结核病和肺部疾病研究所 (NRITLD) 气管疾病研究中心 8 伊朗德黑兰沙希德贝赫什提医科与健康服务大学国家结核病和肺部疾病研究所 (NRITLD) 慢性呼吸道疾病研究中心伊朗 9 伊朗德黑兰沙希德贝赫什提医科大学国家结核病和肺部疾病研究所 (NRITLD) 病毒学研究中心 10 伊朗设拉子医科大学放射学系医学成像研究中心
提交日期:2024 年 5 月 4 日 修订日期:2024 年 6 月 11 日 接受日期:2024 年 7 月 3 日 发布日期:2024 年 7 月 3 日 摘要 在 RSI Siti Rahmah Padang 的放射科设施中,对创伤病例 CT 扫描脑部检查中切片厚度变化对图像质量的差异进行了分析研究。本研究旨在确定创伤病例 CT 扫描脑部检查中 3 毫米、5 毫米和 7 毫米不同切片厚度的图像质量差异,以及在创伤病例的 CT 扫描脑部检查中,哪种切片厚度能够产生最佳图像质量以确立诊断。本研究于 2022 年 1 月至 2022 年 6 月进行,采用定量研究和实验方法,采用目的抽样技术,并使用加权平均分数公式和 SPSS Friedman 方法处理分发给受访者的问卷数据。根据加权平均得分公式,切片厚度变化3 mm、5 mm和7 mm的最高均值为3 mm的切片厚度,均值为3.64,对比度分辨率均值为3.67,噪声为3.49,创伤病例CT脑部检查骨窗结果平均为t3.74。根据Friedman方法的SPSS结果发现,创伤病例CT脑部检查中3 mm、5 mm和7 mm切片厚度变化的结果存在显著差异(p值<0.05),这表明Hₒ被拒绝而Hₐ被接受。CT脑部检查中显示创伤的良好切片厚度变化是骨窗中3 mm的切片厚度,因为如果有非常小的骨折,可以更清楚地看到。关键词:脑 CT 扫描,创伤,切片厚度,对比度分辨率背景
乳房筛查的正常放射学做法是,每张图像由两名放射科医生独立审查,如果发现结果有差异,则由第三名放射科医生进行同行评审以分享学习成果。每张图像都有一名放射科医生报告我们在人工智能方面的研究着眼于胸部筛查和临床发现。人工智能研究了 12,000 张图像,使其成为迄今为止英国医疗保健领域最大、最全面的研究之一。1.3 当人工智能审查这 12,000 张图像时,放射科医生审查了任何标记的差异,研究发现遗漏了 0.6% 的潜在重要发现。其中包括继发性并发症、遗漏的骨折、遗漏的癌症结节和肺栓塞。1.4 0.6% 是一个极低的差异率,这不仅表明我们的放射科医生在准确性方面有着出色的记录,而且还表明可以使用人工智能来审查放射图像。以进一步提高质量和安全性
非放射科医师、普通放射科医生和胸部放射科医生可以提高对恶性肺结节、气胸、肺炎和活动性肺结核等胸部重大异常的诊断准确性。² ³ ⁴ ⁵ ⁶ ⁷ ⁸
¹ 法国里尔大学医院肌肉骨骼放射科。² 法国里尔大学里尔医学院。通讯地址:Thibaut JACQUES 博士。法国里尔大学医院肌肉骨骼放射科,59000 里尔。电子邮箱:thibaut.jacques@chru-lille.fr
卡蒂纳拉医院的两个 CT 科室、胸骨和造影放射科、超声波科室、复杂结构肿瘤科 (UCO) 诊断和介入放射科均位于医院二楼的服务大楼内。磁共振中心位于一楼。急诊放射科胸骨科位于三楼。诊断和介入血管造影科室位于四楼。可通过医院正门进入该服务,然后按照橙色标志前往。每个部分都有编号。候诊室用字母标记。
摘要背景 自主人工智能 (AI) 骨龄评定系统 (BoneXpert) 旨在用于临床放射学实践,作为一种 AI 替代工具,完全取代放射科医生。目的本研究旨在调查该工具在临床实践中的使用情况。放射科医生是否更倾向于使用 BoneXpert 来协助而不是取代自己,以及这样做节省了多少时间?材料和方法我们向已经使用该软件的欧洲各科室的 282 名放射科医生发送了一份包含八个多项选择题的调查问卷。结果 97 名 (34%) 受访者来自 18 个国家。他们的回答显示,在安装自动化方法之前,83 名 (86%) 的受访者每次骨龄评定花费超过 2 分钟;安装后,这一比例下降到 20 名 (21%) 。只有 17/97 (18%) 的受访者使用 BoneXpert 完全取代放射科医生;其余的受访者在不同程度上使用它来协助放射科医生。例如,39/97 (40%) 从未推翻自动读数,而 9/97 (9%) 推翻了超过 5% 的自动评级。大多数 58/97 (60%) 的受访者自己检查了 X 光片以排除潜在疾病的特征。结论 BoneXpert 显著缩短了骨龄测定的报告时间。然而,射线分析不仅仅涉及确定骨龄。它还涉及识别异常,因此,放射科医生无法完全被取代。最初为取代放射科医生而开发的 AI 系统可能更适合作为 AI 辅助工具,特别是如果它们尚未经过验证可以自主工作,包括在图像超出有效范围时省略评级的能力。
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
大脑着火:MOGAD PA Williams(1)、M. Janquil(1)、D Farrell(2)、P. Crowley(3)、O. Tuohy(3)、M. Farrell(1)等部门的频谱(1)沃特福德大学医院放射科,沃特福德市邓莫尔路(2)沃特福德大学医院神经内科,沃特福德市邓莫尔路,爱尔兰,(3)贝尔法斯特女王大学医学院,贝尔法斯特大学路,北爱尔兰。
摘要。我们提出了将基于人工智能 (AI) 的图像分析算法集成到现有放射学工作流程中的路线图,以便 (1) 放射科医生可以从 AI 带来的各种成像任务自动化增强中受益匪浅,并且 (2) 放射科医生的反馈可用于进一步改进 AI 应用程序。这是通过建立三个成熟度级别来实现的,其中 (1) 研究使放射科医生能够可视化基于 AI 的结果/注释,而无需生成新的患者记录; (2) 生产允许基于 AI 的系统生成存储在机构图片存档和通信系统中的结果; (3) 反馈为放射科医生提供了编辑 AI 推理结果的工具,以便定期重新训练已部署的 AI 系统,从而允许持续有机改进基于 AI 的放射学工作流程解决方案。一个案例研究(即使用 T1 加权对比增强三维 MRI 检测脑转移瘤)根据上述成熟度级别说明了特定基于 AI 的应用程序的部署细节。结果显示,给定的 AI 应用程序随着放射科医生的反馈而显着改善;由于放射科医生的裁决,错误检测的脑转移瘤(假阳性)数量从每位患者 14.2 个减少到 9.12 个,随后注释的数据集数量从 93 个增加到 217 个。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI: 10.1117/1.JMI.7.1.016502 ]