如今,围绕库仑势垒对聚变反应和准弹性散射的研究引起了广泛关注。通过这类重离子碰撞可以研究核-核相互作用势和核结构性质 [ 1 ]。碰撞伙伴的核结构性质可显著影响亚势垒域中的聚变产额。聚变对中不同内在自由度的参与降低了参与者之间的聚变势垒,并导致与一维势垒穿透模型 (BPM) 的预测相比大得多的聚变结果。文献中已充分证实,聚变伙伴的相对运动和内在通道之间的耦合会导致单个聚变势垒分裂为不同高度和重量的势垒分布。这被称为聚变势垒分布,聚变势垒分布的形状对聚变过程中涉及的耦合类型非常敏感。聚变势垒分布的概念由 Rowley 等人 [2] 提出,可通过对 𝐸 𝑐.𝑚. 𝜎 𝑓 对质心能量取二阶导数获得。此外,大角度准弹性散射函数可以产生与聚变势垒分布非常相似的势垒分布,并且聚变势垒分布和准弹性势垒分布的形状基本相同。准弹性势垒分布可通过对 𝐸 𝑐.𝑚. 的准弹性散射截面取一阶导数获得。众所周知,聚变过程可以用穿透概率来解释,基于量子力学隧穿,而准弹性散射与反射概率有关。重离子准
这里介绍的两个项目都计划使用毫米波长雷达来探测毫米大小的空间碎片物体。将雷达放置在靠近物体的位置有两个好处。首先,由于返回功率与距离(R)之间存在R − 4 的关系,因此靠近物体可以获得更高的返回功率。这种关系意味着,尽管卫星雷达比地面雷达弱得多,但如果雷达足够靠近目标,则返回功率会更高。其次,由于雷达散射截面,从物体返回的雷达功率与λ − 2 成正比。因此,较短的波长(较高的频率)有利于探测这些小块的空间碎片。由于毫米波长会被地球大气层衰减,因此要探测它们,必须将它们放置在卫星上。
摘要。已知低能转移状态下的弹性中微子对电子和原子核的散射截面对中微子的电磁特性非常敏感。特别是,可以使用能量阈值非常低的液体或固体探测器有效地搜索中微子的磁矩。我们提出了一种将中微子磁矩贡献纳入凝聚态靶低能弹性中微子散射理论处理的形式。采用动态结构因子的概念来描述靶中的集体效应。用数字方法计算了超流体 4He 上氚反中微子散射的微分截面。我们发现 10 − 11 µ B 量级的中微子磁矩对截面有很强的影响。我们的结果可用于未来在液体或固体目标的低能中微子散射实验中寻找中微子磁矩。
由于具有不一致的信号模式,我们可以将动态散射视为聚焦入射电子的单个原子的叠加。在这里,我们扩展了所谓的原子透镜模型[3](以前为ADF开发)到光谱法。对于混合色谱柱,随着计算成本而迅速超过了多层计算的能力,订购的可能性呈指数增长。相比之下,原子镜头模型允许快速生成EDX散射截面,并在通道条件下考虑元素的排序。如图2对于核心壳Au-pt纳米棒,从多层计算中提取的散射横截面与原子透镜模型预测相当一致,但与假定信号与每种类型的原子数线性缩放的线性模型的偏差大不相同。要将原子镜头模型部署到实验结果中,我们可以合并实验测量的EDX部分横截面[4],这被称为部分,因为它在归一化过程中包括所有显微镜依赖性因子,从而绕过了EDX检测器的困难表征。此方法使我们能够探索具有多个元素的异质材料的巨大顺序可能性。
摘要。我们研究了重子化学势 µ B 对平衡和非平衡状态下夸克胶子等离子体 (QGP) 特性的影响。平衡状态下 QGP 的描述基于动态准粒子模型 (DQPM) 中的有效传播子和耦合,该模型与格点量子色动力学 (QCD) 中解禁温度 T c 以上的部分子系统的状态方程相匹配。我们计算了(T,µ B)平面内的传输系数,例如剪切粘度η 与体积粘度 ζ 与熵密度 s 之比,即 η/s 和 ζ/s,并将其与 µ B = 0 时的其他模型结果进行比较。QGP 的非平衡研究是在部分子-强子-弦动力学 (PHSD) 传输方法中进行的,该方法扩展到部分子领域,通过明确计算在实际温度 T 和重子化学势 µ B 下评估的每个单独时空单元中部分子散射的总和微分部分子散射截面(基于 DQPM 传播子和耦合)。在相对论重离子碰撞的不同可观测量中研究了它们的 µ B 依赖性的轨迹,重点关注 7.7 GeV ≤ √ s NN ≤ 200 GeV 能量范围内的定向和椭圆流系数 v 1 、v 2。
BF、BF 2 、BF 3 和正离子种类如B + 、BF + 、BF + 2 、BF + 3 。此类碰撞过程还控制等离子体的稳定性和放电平衡。等离子体中产生的种类和自由电子会引起各种碰撞过程,了解这些碰撞过程对于模拟 BF 3 等离子体非常重要。因此,等离子体中所有离子和中性粒子的可靠电子碰撞截面是准确进行等离子体放电模拟的重要数据。碰撞截面数据是等离子体模拟的重要输入,此类模拟的准确性与输入数据的可靠性直接相关。在 (3 ∼ 100 eV) 范围内的碰撞截面数据对于低温等离子体 (3 ∼ 5 eV) 很重要,其中电子的能量可分布高达 100 eV。弹性散射是大多数等离子体放电中的主要过程,因为与其他反应相比,该过程的碰撞截面较大;弹性散射有助于使电子热化。另一方面,对于电子激发过程,电子激发阈值低于电离阈值,因此当电子温度较低时,该反应可能很重要。在实验中,散射和激发截面可用于分析电子加热机制 [5, 6]。即使在这种情况下,也需要至少 25 eV 的数据,但最高可达 100 eV。此外,由于这些自由基难以制备、反应性强且具有强腐蚀性,因此对 BF 和 BF 2 等自由基的实验研究既困难又罕见;因此目前没有可用的实验数据。理论计算在提供全面能量范围内的数据方面的重要性已得到充分证实 [7]。电子与中性 BF 3 分子的碰撞研究在理论和实验上都得到了相当大的关注 [4, 8–17]。文献中也有一些关于正 BF x 离子的各种碰撞过程的电子碰撞研究 [1, 18, 19]。然而,还没有对自由基 BF 和 BF 2 中的电子诱导碰撞过程进行系统研究,而这种碰撞过程在任何含 BF 3 的等离子体中都起着重要作用。我们最近使用 R 矩阵方法对 BF 3 分子的电子散射截面进行了研究[17],结果表明其与实验数据高度一致,这促使我们对 BF 和 BF 2 进行类似的计算。这是本研究的主要动机之一。文献中唯一可用的研究是 Kim 等人[10]的工作,他们使用二元相遇 Bethe (BEB) [20] 方法提供了 BF 和 BF 2 的电离截面。因此,在本研究中,我们提供了 BF 和 BF 2 的一组重要截面,如弹性、激发、微分截面(DCS)和动量转移截面(MTCS)以及总电离截面,并与 BEB 数据进行比较 [10]。使用 R 矩阵和球面复光学势 (SCOP) 方法,采用完整活性空间配置 (CAS-CI) 和静态交换 (SE) 模型进行计算。CAS-CI 计算随着目标状态数量的增加而进行,直到获得收敛结果。我们使用两种理论方法在不同的能量范围内进行计算。在低能区(<10eV),从头算 R 矩阵方法可以很好地表示电子-分子