Loading...
机构名称:
¥ 1.0

BF、BF 2 、BF 3 和正离子种类如B + 、BF + 、BF + 2 、BF + 3 。此类碰撞过程还控制等离子体的稳定性和放电平衡。等离子体中产生的种类和自由电子会引起各种碰撞过程,了解这些碰撞过程对于模拟 BF 3 等离子体非常重要。因此,等离子体中所有离子和中性粒子的可靠电子碰撞截面是准确进行等离子体放电模拟的重要数据。碰撞截面数据是等离子体模拟的重要输入,此类模拟的准确性与输入数据的可靠性直接相关。在 (3 ∼ 100 eV) 范围内的碰撞截面数据对于低温等离子体 (3 ∼ 5 eV) 很重要,其中电子的能量可分布高达 100 eV。弹性散射是大多数等离子体放电中的主要过程,因为与其他反应相比,该过程的碰撞截面较大;弹性散射有助于使电子热化。另一方面,对于电子激发过程,电子激发阈值低于电离阈值,因此当电子温度较低时,该反应可能很重要。在实验中,散射和激发截面可用于分析电子加热机制 [5, 6]。即使在这种情况下,也需要至少 25 eV 的数据,但最高可达 100 eV。此外,由于这些自由基难以制备、反应性强且具有强腐蚀性,因此对 BF 和 BF 2 等自由基的实验研究既困难又罕见;因此目前没有可用的实验数据。理论计算在提供全面能量范围内的数据方面的重要性已得到充分证实 [7]。电子与中性 BF 3 分子的碰撞研究在理论和实验上都得到了相当大的关注 [4, 8–17]。文献中也有一些关于正 BF x 离子的各种碰撞过程的电子碰撞研究 [1, 18, 19]。然而,还没有对自由基 BF 和 BF 2 中的电子诱导碰撞过程进行系统研究,而这种碰撞过程在任何含 BF 3 的等离子体中都起着重要作用。我们最近使用 R 矩阵方法对 BF 3 分子的电子散射截面进行了研究[17],结果表明其与实验数据高度一致,这促使我们对 BF 和 BF 2 进行类似的计算。这是本研究的主要动机之一。文献中唯一可用的研究是 Kim 等人[10]的工作,他们使用二元相遇 Bethe (BEB) [20] 方法提供了 BF 和 BF 2 的电离截面。因此,在本研究中,我们提供了 BF 和 BF 2 的一组重要截面,如弹性、激发、微分截面(DCS)和动量转移截面(MTCS)以及总电离截面,并与 BEB 数据进行比较 [10]。使用 R 矩阵和球面复光学势 (SCOP) 方法,采用完整活性空间配置 (CAS-CI) 和静态交换 (SE) 模型进行计算。CAS-CI 计算随着目标状态数量的增加而进行,直到获得收敛结果。我们使用两种理论方法在不同的能量范围内进行计算。在低能区(<10eV),从头算 R 矩阵方法可以很好地表示电子-分子

BF 和 BF2 的电子散射研究 - 伦敦大学学院发现

BF 和 BF2 的电子散射研究 - 伦敦大学学院发现PDF文件第1页

BF 和 BF2 的电子散射研究 - 伦敦大学学院发现PDF文件第2页

BF 和 BF2 的电子散射研究 - 伦敦大学学院发现PDF文件第3页

BF 和 BF2 的电子散射研究 - 伦敦大学学院发现PDF文件第4页

BF 和 BF2 的电子散射研究 - 伦敦大学学院发现PDF文件第5页

相关文件推荐