基础科学与应用科学系,印度穆扎法纳加尔(U.P)的Shri Ram Group of Colleges,印度抽象自由基反应是一类化学反应,涉及高反应性中间体,称为自由基。这些物种具有未配对的电子,使它们极为不稳定,渴望形成稳定的键。自由基机制是化学中的基本过程,在各种化学反应中起着重要作用,包括聚合,燃烧和生物学过程。该机制通常涉及三个主要阶段:启动,传播和终止。在启动步骤中,自由基是通过诸如均质键裂解的过程产生的,这些过程通常是由热,光或化学催化剂诱导的。在传播过程中,这些自由基与稳定的分子反应形成新的自由基,从而维持链反应。当两个自由基结合起来,中和它们的反应性并停止链过程时,就会发生终止步骤。自由基机制在合成化学中至关重要,尤其是通过自由基聚合的产生聚合物。然而,在氧化应激导致细胞损伤的生物系统中观察到的那样,不受控制的自由基活性可能是有害的。抗氧化剂在通过清除自由基来缓解这种损害方面起着至关重要的作用。本文将研究自由基反应的基本机制,包围涉及的关键步骤以及影响其反应性的因素。
摘要:许多研究发现氧化应激或自由基参与糖尿病的进展,在糖尿病期间起着重要作用,包括胰岛素作用受损和并发症发病率增加。本综述基于通过使用 PubMed、Medline、Scopus 等不同网站检测自由基在糖尿病进展中的作用。内皮细胞还含有大量的醛酮还原酶,因此容易增加多元醇途径的激活。此外,大量证据支持以下假设:高血糖或糖尿病会导致血管二酰甘油积聚,随后激活 PKC,从而导致各种心血管缺陷。氧和氮自由基 (ROS/RNS) 水平的升高与脂质过氧化、蛋白质的非酶糖基化和葡萄糖氧化有关,这会导致糖尿病及其并发症。大多数研究表明氧化应激与糖尿病及其与心脏、肝脏、肾脏和眼睛相关的并发症之间存在关联。因此,氧化应激在代谢紊乱,特别是 NIDDM 中似乎更令人担忧。结论是,代谢氧化是胰岛素依赖型和非胰岛素依赖型糖尿病背后的最重要因素。关键词:氧化应激、非胰岛素依赖型糖尿病、自由基、抗氧化剂
星际复杂有机分子 (iCOM) 的形成是天体化学中的热门话题。试图重现观测结果的主要范例之一是假设 iCOM 是在覆盖星际尘埃颗粒的冰幔上由于自由基 - 自由基偶联反应而形成的。我们通过计算量子力学方法研究冰表面上 iCOM 的形成。具体来说,我们研究了涉及 CH 3 + X 体系 (X = NH 2 、CH 3 、HCO、CH 3 O、CH 2 OH) 和 HCO + Y (Y = HCO、CH 3 O、CH 2 OH) 以及 CH 2 OH + CH 2 OH 和 CH 3 O + CH 3 O 体系的偶联和直接氢提取反应。我们利用密度泛函理论计算了两个冰水模型(分别由 33 个和 18 个水分子组成),计算了这些反应的活化能垒以及所有研究的自由基的结合能。然后,我们利用反应活化能、解吸能和扩散能以及通过 Eyring 方程推导的动力学估算了每个反应的效率。我们发现表面上的自由基 - 自由基化学并不像通常假设的那么简单。在某些情况下,直接的氢提取反应可以与自由基 - 自由基偶联竞争,而在其他情况下,它们可能包含较大的活化能。具体而言,我们发现 (i) 乙烷、甲胺和乙二醇是相关自由基 - 自由基反应的唯一可能产物;(ii) 乙二醛、甲酸甲酯、乙醇醛、甲酰胺、二甲醚和乙醇的形成可能与各自的氢提取产物竞争; (iii)乙醛和二甲基过氧化物似乎不太可能是谷物表面产物。
在适当大小的支架和腔室中的响应传感器平台中。惊吓的神经生物学。Koch M.,Prog Neurobiol。 1999年10月; 59(2):107-28-惊吓调制的翻译价值。 Fendt M,Koch M.,细胞组织Res。 2012年10月:354(1):287-95脑干电路介导惊吓反射的抑制。 Fendt M,Li L,Yeomans JS。 心理药理学(Berl)。 2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。 Yeomans JS,弗兰克兰PW。 大脑res res res rev. 1995年11月; 21(3):301-14Koch M.,Prog Neurobiol。1999年10月; 59(2):107-28-惊吓调制的翻译价值。Fendt M,Koch M.,细胞组织Res。 2012年10月:354(1):287-95脑干电路介导惊吓反射的抑制。 Fendt M,Li L,Yeomans JS。 心理药理学(Berl)。 2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。 Yeomans JS,弗兰克兰PW。 大脑res res res rev. 1995年11月; 21(3):301-14Fendt M,Koch M.,细胞组织Res。2012年10月:354(1):287-95脑干电路介导惊吓反射的抑制。Fendt M,Li L,Yeomans JS。 心理药理学(Berl)。 2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。 Yeomans JS,弗兰克兰PW。 大脑res res res rev. 1995年11月; 21(3):301-14Fendt M,Li L,Yeomans JS。心理药理学(Berl)。2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。Yeomans JS,弗兰克兰PW。大脑res res res rev.1995年11月; 21(3):301-14
抽象氧化是体内能量产生的重要生物学过程。关键问题之一是氧分子产生自由基的趋势。这些自由基是天然代谢的副产物,它们的持续暴露会导致氧化应激,从而导致蛋白质,脂质和核酸的氧化。活性氧,氮和硫的释放会导致细胞损伤,基因突变,器官故障或器官衰竭,甚至可能导致死亡。这种氧化损伤在癌症,糖尿病,类风湿关节炎,艾滋病,肾病,神经退行性和生殖疾病,肺和心血管疾病等中具有重要作用如果我们的身体的抗氧化剂供应与自由基一代相距不足,那么它可能在淬灭自由基之前会造成损害。本评论涉及自由基的类型,它们在各种疾病中的作用,抗氧化剂和显示抗氧化活性的不同成分。
https://doi.org/10.26434/chemrxiv-2024-4s0f9 orcid:https://orcid.org/0000-0002-0648-956x Chemrxiv不同行评审的内容。许可证:CC由4.0
耐药性是癌症治疗中最大的挑战之一,限制了治愈患者的潜力。在许多肿瘤中,蛋白质 NRF2 的持续激活使肿瘤细胞对化疗和放疗产生耐药性。因此,阻断癌症中不适当的 NRF2 活性已被证明可以降低疾病模型中的耐药性。人们对 NRF2 抑制剂的科学兴趣日益浓厚。然而,迄今为止开发的化合物并非靶向特异性的,并且具有高度毒性,阻碍了临床应用。能够增强 NRF2 与其泛素化促进调节蛋白(KEAP1 或 β -TrCP)结合的化合物有可能增加 NRF2 降解,并可能作为癌症治疗中的潜在化学增敏剂。基于分子胶型机制的方法,其中配体稳定蛋白质与其结合伙伴之间的三元复合物,已证明可通过稳定其与 β -TrCP 的相互作用来增强 β -catenin 降解。该策略可用于合理发现降解性 β -TrCP-NRF2 和 KEAP1-NRF2 蛋白质-蛋白质相互作用增强剂。我们提出了一种选择性抑制肿瘤中 NRF2 活性的新方法。该方法基于最新方法,有可能成为抗癌药物库中一个有前途的新成员。
自由基(自由基)是原子或分子中的孤独电子。它可以在环境,生物和细胞中的任何地方,尤其是细胞内或新陈代谢过程中的生产过程,并随氧分子的流动。氧分子中的电子不平衡。在反应中成为自由基和敏捷性,并能够从其他分子中汲取电子以替代缺失的电子,从而使它们保持平衡或稳定,在这种情况下,这种反应将随着链反应并一直发生在细胞中。
本期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174378 注意:引用本作品时,请引用原始出版物。Zheng, W., Halim, J., Etman, A., El Ghazaly, A., Rosén, J., Barsoum, M., (2021), Boosting the volumetric capacities of MoO3-x free-standing films with Ti3C2 MXene, Electrochimica Acta , 370, 137665. https://doi.org/10.1016/j.electacta.2020.137665
量子信息技术为提高设备相干性,对材料和界面的质量提出了严格的要求。然而,人们对顺磁杂质的化学结构和来源知之甚少,这些杂质会产生通量/电荷噪声,导致脆弱量子态的退相干,阻碍大规模量子计算的发展。在这里,我们对量子器件的常见基板-Al 2 O 3 进行高磁场电子顺磁共振 (HFEPR) 和超精细多自旋光谱分析。在无定形形式下,-Al 2 O 3 也不可避免地存在于铝基超导电路和量子比特中。检测到的顺磁中心位于表面之内,具有明确但高度复杂的结构,延伸到多个氢、铝和氧原子。建模表明,这些自由基可能源自许多金属氧化物中常见的活性氧化学。我们讨论了 EPR 光谱如何有益于寻找表面钝化和退相干缓解策略。