g-cn是一个非特异性的术语,它包括一个相当广泛的材料家族,由石墨层和/或富含N型芳族环的聚合物链组成。单体单元由1,3,5-三嗪[2]或三嗪(也称为己嗪)部分由SP 3杂交N原子连接起来。[3]氮的原子C/N比有很大的变化,例如,对于理想的石墨结构,其对应于0.75,而对于更现实的(和讨论)的三嗪单元结构,理论C/N原子比为0.67,而C/H ATOMIC比率为2.0。cn仅包含地球丰富的元素碳,氮和氢,可以从廉价且易于获得的前体合成,并且具有较高的化学和热稳定性,这是由于共轭层结构中成分之间的强相价键。由于广泛的共轭,CN在电磁频谱的可见区域吸收,带隙为2.7 eV(= 460 nm),并且已成功地用于催化广泛的反应。由于所有这些原因,G-CN迅速成为当前光催化研究的主要参与者。[4]
在21世纪,面对气候变化的必要性变得紧迫,从而引起了个人的不利心理影响。气候变化焦虑的特征是对与气候变化有关的环境灾难的持续担忧,已成为一种值得注意的现象。为了衡量这一现象,研究人员引入了气候变化焦虑量表(CCAS),这是一种由22个项目组成的自我管理仪器。这项研究检查了意大利版22项CCA的心理测量特性,涉及189名大学生。利用确认因子分析(CFA),对意大利版本的CCAS的因子结构进行了审查。可靠性是通过Cronbach的alpha衡量的,而并发有效性是通过正面和负面影响时间表(PANAS)和偏见的健康问卷-4(PHQ-4)建立的。CCA表现出适合四因素模型(认知情绪障碍,功能障碍,气候变化经验和行为参与的经验)的足够。也证实了PANAS和PHQ-4的同时有效性。意大利语版本的CCA被认为是评估气候变化焦虑的可靠工具,即使在意大利语环境中,也为面对环境问题而言,为增强福祉的研究和干预措施提供了有希望的前景。
自由基(自由基)是原子或分子中的孤独电子。它可以在环境,生物和细胞中的任何地方,尤其是细胞内或新陈代谢过程中的生产过程,并随氧分子的流动。氧分子中的电子不平衡。在反应中成为自由基和敏捷性,并能够从其他分子中汲取电子以替代缺失的电子,从而使它们保持平衡或稳定,在这种情况下,这种反应将随着链反应并一直发生在细胞中。
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
二氟甲基化和二氟烷基化试剂,其中二氟甲基亚砜亚胺 10 和砜 9,11 因其在有机合成中的独特反应性而引起了广泛关注。二氟烷基亚砜亚胺和砜试剂的高度可调功能性在不同反应条件下表现出不同的反应性和选择性。Hu 等人报道,N-甲苯磺酰基-S-二氟甲基-S-苯基亚砜亚胺 [PhS(O)NTsCF 2 H] 可以在 NaH 存在下释放二氟卡宾,被 S-、N- 和 C-亲核试剂捕获(方案 1 a,左)。10a 相反,光催化使 PhS(O)NTsCF 2 H 成为二氟甲基自由基来源,用于烯烃的氧化二氟甲基化。 12 二氟甲基苯基砜 (PhSO 2 CF 2 H) 也采用了类似的活化策略,以 LHMDS 为碱进行去质子化生成亲核性 PhSO 2 CF 2 − 物质,13 而在电化学条件下则得到亲电性 PhSO 2 CF 2 自由基物质(方案 1 b)。14 然而,同时具有亚砜亚胺和砜官能团的二氟烷基化试剂的不同反应性和选择性尚未见报道(方案 1 c)。
https://doi.org/10.26434/chemrxiv-2024-4s0f9 orcid:https://orcid.org/0000-0002-0648-956x Chemrxiv不同行评审的内容。许可证:CC由4.0
抽象中风是世界上大部分地区的死亡原因和残疾的主要原因。尤其是中国面临着中风的最大挑战,因为人口很快。在数十年的临床试验中,没有神经保护剂在主要临床终点上具有可重复的功效,因为再灌注可能是神经保护需要临床上有益的。幸运的是,溶栓和血管血管血栓切除术的成功使我们进入了急性缺血性中风(AIS)疗法的再灌注时代。脑细胞保护剂可以预防缺血的有害作用,因此在再灌注前“冻结”缺血性阴茎,扩展了再灌注疗法的时间窗口。由于再灌注通常会导致再灌注损伤,包括流血转化,脑水肿,梗塞进展和神经系统恶化,因此细胞保护剂将通过预防或减少再灌注损伤来增强再灌注疗法的疗效和安全性。因此,再灌注和细胞保护剂是AIS治疗中互惠互益的一对。在这篇综述中,我们概述了在AIS的急性阶段缺血或缺血/再灌注后阴影内导致细胞死亡的关键病理生理事件,重点是兴奋性毒性和自由基。我们讨论了细胞保护疗法的关键药理靶标,并评估了通过临床试验进行的细胞保护剂的最新进展,突出了多坐菌剂的细胞保护剂,这些剂在缺血性和再灌注级联的多个水平上进行干预。
ABSTRACT: The realization of next-generation gate-all-around field-effect transistors (FETs) using two-dimensional transition metal dichalcogenide (TMDC) semiconductors necessitates the exploration of a three-dimensional (3D) and damage-free surface treatment method to achieve uniform atomic layer-deposition (ALD) of a high-k dielectric film on the inert surface of a TMDC channel.这项研究开发了对MOS 2的BCl 3等离子体衍生的自由基处理,以使MOS 2表面功能化,以使超薄AL 2 O 3膜的随后ALD函数。微观结构验证证明,在平面MOS 2表面上大约2 nm厚2 O 3膜的覆盖范围,并使用从基板漂浮的悬浮的MOS 2通道确认了该技术对3D结构的适用性。密度功能理论计算由光学发射光谱和X射线光电子光谱测量值支撑,揭示了Bcl激进分子主要由BCL 3等离子体产生,并吸附在MOS 2上,并促进了Ultrathin Ald-Ald Ald-Ald 2 O 3膜的均匀成核。拉曼和单层MOS 2的光致发光测量以及底部门控的FET的电测量结果证实,由Bcl 3等离子体衍生的自由基治疗造成的可忽略不计。最后,证明了具有超薄ALD-Al 2 O 3(〜5 nm)栅极介电膜的顶部门控FET的成功操作,表明预处理的有效性。关键字:MOS 2,表面功能化,BCl 3等离子体,自由基,原子层沉积,高K介电
Xueting Feng 1,5 , Jiyuan Liu 2,5 , Long Chen 3 , Ya Kong 1 , Zedong Zhang 4 , Zixuan Zhang 1 , 2
对储能设备的需求不断增长,要求开发更高效,更可持续的系统。当前的锂离子电池带来了几个安全问题以及环境危害时,需要考虑一些替代方案。基于有机材料的电池的面积引起了人们的兴趣,因为它们允许替换当前使用的金属,并通过有机氧化还原活性材料(可回收且对环境友好)的萃取和加工水平产生重大的环境影响。在这篇评论中,提供了有机自由基电池领域最新进展的概述,重点是不同的电池组件,并描述了主要的使用材料和过程。该主题的关系是开发下一代可持续储能系统以及当前限制使用此类电池的主要挑战。