摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
摘要 - 本文专用于在锂离子电池单元的规模上使用PCM金属泡沫复合材料设计最佳热管理系统。研究了PCM和PCM金属泡沫复合材料吸收由锂离子细胞产生的热量的能力,开发了数学和数值模型。该建模基于从CERTES实验室中开发的新实验测试工作台进行的表征实验收集的数据。为了表征锂离子细胞的热行为,开发的二维数值模型集成了Brinkmann-Forchheimer扩展的Darcy方程,焓孔隙率法和二元能量方程。数值研究是通过耦合MATLAB和COMSOL多物理学进行的。结果表明,添加铝泡沫可以对细胞进行更有效的热管理。优化研究表明,低估厚度(所需的PCM质量)会导致极端温度。还发现,额外的PCM添加对细胞表面温度没有很大影响。
“最大的挑战是开发一个数值模型,该模型可以模拟晚期天生条件下生物地球化学周期的复杂,动态行为。,我们通过在其他时间和目的中使用类似模型,将不同的组件一起使用和耦合在一起,以模拟挥发性火山事件的后期。
测试后进行模拟 – 数值模型经过“调整”以匹配大型测试件/EA 子组件结果。计算模型只能预测在实验阶段测试的特定配置。例如,如果加载条件发生变化(即撞击位置、速度等)和/或几何形状发生变化,则模型可能会或可能不会预测结构的耐撞性行为。
摘要:地面激光扫描 (TLS) 有助于检测斜坡和陡坡的不安全行为。它还有助于评估土方工程的稳定性。土方结构通常由合格的地面材料制成。人们可以区分点状结构,例如土丘、堡垒和水坝,以及线性结构,例如道路、铁路和防洪堤。本文涉及监测和分析与选定土方结构不稳定行为相关影响的问题。TLS 能够以简单和自动化的方式遥感表面变化。使用激光扫描仪进行定期的多次测量,以长期监测选定物体的行为。使用有限元法 (FEM) 等离散数值模型考虑了基质的岩土特性,并允许对此类结构进行风险评估和稳定性测试。结构的数值模型以及基质的参数被引入到 FEM 包中。这样就可以分析应力、应变和位移,以及不同的载荷情况。本文介绍了几个选定的土体结构,并对其进行了上述分析。
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
c) 剖面 A – A*。剖面图中显示的 Riegel Horizon (RH) 未在数值模型中考虑。数据来自 GDI-BW (2015)、Geofabrik (2022)、USGS (2017)。水头数据来自弗莱堡环境保护局和巴登-符腾堡州环境、调查和自然保护研究所 (LUBW)。剖面图根据 Wirsing 和 Luz (2005) 修改。
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
摘要:高性能计算(HPC)的局限性严重制约着数值模型的发展。传统数值模型通常采用双精度来保证结果的准确性,但这种做法计算成本较高。虽然使用较低的精度可以大幅降低计算成本,但可能会引入舍入误差,这在特定条件下会影响精度。准双精度算法(QDP 算法)通过保留修正值来补偿这些舍入误差,从而提高结果精度。为了探究该算法对提高数值模型结果精度的有效性,本文将其应用于单精度版本的跨尺度预测模型——大气(MPAS-A),并在两个理想情况和两个真实数据案例中评估其性能。结果表明,应用QDP算法在三种情况下可使表面压力偏差分别降低68%、75%、97%和96%。与双精度试验相比,运行时间分别减少了28.6%、28.5%、21.1%和5.7%。本研究表明,QDP算法为数值模型提供了有效且经济的计算能力。