并非所有数字处理都是一样的。Trinix NXT 路由切换器架构在采用最佳最新电路技术的同时,尽可能保持信号路径的简单性。这种架构减少了独立电路板的数量,从而减少了本地电源组件、互连和分布式控制电路的数量。电路越少,信号路径越直接,电路板上用于优化布局的空间也越多。特殊的 PC 板基板材料、最新一代 3 Gb/s 设备和设计的使用以及其他先进的工程技术增强了这些电路板的能力,确保您花费更少的时间进行故障排除或添加变通方法来恢复已达到极限的信号。
并非所有数字处理都是一样的。Trinix NXT 路由切换器架构在采用最佳最新电路技术的同时,尽可能保持信号路径的简单性。这种架构减少了独立电路板的数量,从而减少了本地电源组件、互连和分布式控制电路的数量。电路越少,信号路径越直接,电路板上用于优化布局的空间也越多。特殊的 PC 板基板材料、最新一代 3 Gb/s 设备和设计的使用以及其他先进的工程技术增强了这些电路板的能力,确保您花费更少的时间进行故障排除或添加变通方法来恢复已达到极限的信号。
这里显示的是典型的系统架构,类似于所有波音飞机上使用的架构:两个安装在发动机上的压电传感器,一个安装在风扇轴承上,一个安装在涡轮机壳体上,用于监测每个发动机的振动。EVM 上的前面板显示屏允许操作员轻松访问系统 BITE 消息、测量的振动值、FAN 和 LPT 平衡结果等。前面板维护连接器提供用于发动机故障排除的原始信号,还允许上传和下载操作软件。EVM 单元提供数字处理和 FFT 分析,用于振动参数趋势和冷平衡。发动机振动水平传输到飞机系统和驾驶舱显示器。
脉冲星的探测需要耗费大量的计算资源。传统方法主要侧重于从记录的数据中探测脉冲星。然而,数字处理技术的进步,尤其是 FPGA 和 GPU 的开发,使人们对实时脉冲星探测的兴趣日益浓厚,其显著优势在于可以观测罕见的瞬态事件、提高天文台的观测效率等。为了实现这样的系统,需要仔细考虑资源分配,尤其是在向更通用的实时脉冲星搜索引擎扩展时。本研究项目迈出了实现这一目标的第一步,应用一种通用数学方法,使用二阶延迟网络实现任意色散曲线,并将其作为 FIR 和 IIR 滤波器在脉冲星后端实现,从而可以比较资源利用率。
完整的IBCI系统由神经信息采集设备(传感器),神经信息解析设备(处理器),功能执行设备(效应器)和反馈培训设备(反馈)组成。具体而言,“传感器”是BCI系统的关键组成部分,该系统利用神经间的技术来感知脑神经信号,包括使用微电极来记录由神经元活动产生的微妙电信号。“处理器”过滤器并放大了由“传感器”录制的模拟电信号,将它们转换为数字信号进行预处理,通过数字处理算法提取神经功能信息,并使用接近实时解码的算法将提取的信息特征转换为可理解的信号,从而将神经信息转换为可理解的信号,从而完成神经信息编解码。“ effec-
摘要:时间相关单光子计数 (TCSPC) 用于获取单光子雪崩二极管产生的飞行时间 (TOF) 信息。由于每个直方图的测量值受限且存在高背景光,因此很难在统计直方图中获得 TOF 信息。为了提高这些条件下的稳健性,将机器学习的概念应用于统计直方图。使用我们介绍的多峰提取方法,然后进行基于神经网络的多峰分析,可以将分析和资源集中在直方图中的少量关键信息上。评估多个可能的 TOF 位置并分配相关的软决策。与使用传统数字处理的情况相比,所提出的方法在恶劣条件下分配 TOF 的粗略位置 (± 5 %) 时具有更高的稳健性。因此,它可以用于提高系统的稳健性,尤其是在高背景光的情况下。
过去十年来,集成电路技术的进步加速了数字信号处理器的发展。此外,数字处理具有更耐噪声的优点。因此,模数转换器可用作模拟信号和数字信号处理系统的接口。无线通信系统不断提高的速度导致对高速、低分辨率模数转换器功率和速度标准的巨大需求。实际上,数字信号的处理、测试和存储变得简单。为了处理模拟信号,我们将其转换为数字信号。模数转换器可用作实现此目的的桥梁。研究人员正在研究 ADC 中的新模型策略,以期在降低功耗的同时提高性能。由于闪存 ADC 设计通常在其他形式的 ADC 中起着重要作用,因此它在所有其他形式的 ADC 中变得越来越重要,包括流水线和多位 sigma delta ADC。
捕获和处理通过空间分辨的电磁信息基于生物学研究,医学诊断,机器视觉和遥感等领域的重要应用。使用长波红外光谱仪在可见波长处获得更容易获得的数据以外的洞察力非常有吸引力[1]。例如,在红外波长处进行空间解决数据,例如用于植物组织歧视和生物分子检测[2],癌细胞研究[3],机器视觉应用,包括自动驾驶汽车的实时数据处理[4]以及热卫星成像[5]。今天,这些应用程序中的大多数都依赖于使用常规光电探测器以强度的形式捕获空间信息,并随后应用数字处理。在大多数情况下,这些计算可以通过现代算法有效地执行,但生成大量高分辨率数据的应用可以将当前的电子系统推向其极限,并使用大量的时间和能量[6]。
ITU IMT 2030 和其他愿景表明,6G 的未来架构正在朝着与地面网络融合的多层空间网络发展。卫星是该网络的主要元素,正在发展为包含大型星座的互连多轨道。英国的传统是大型 GEO 卫星,但随着向星座制造的转变,需要进行变革和重组。蓬勃发展的英国小型卫星社区的存在应该在这一变化中发挥作用。卫星运营是英国的另一个优势,但随着三家运营商中的两家在 2023 年与欧洲和美国的主要公司合并,其持续发展可能会受到威胁。随着机载设备越来越依赖数字处理,对半导体存储和处理器海外供应链的依赖成为竞争的潜在障碍。HAPS 和 UAS 中 NTN 的其他组成部分是新兴元素,但具有一些英国需要培育的优势。
简介 第一部分是中程地面激光扫描 (TLS) 历史,用于太空、国防和研究驱动应用(处于其发展的初始阶段),第二部分现在探讨技术如何过渡到其他领域,如核工业和文化遗产 (CH)。在 20 世纪 90 年代及以后尤其如此。在早期的数字处理工具的基础上,出现了分析和显示激光扫描仪数据的新方法。在激光扫描发展的第二阶段,非政府组织也在技术的应用过程中充当记录 CH 的推动者。案例研究的目的要么是向更广泛的受众推销技术,要么是帮助人们了解所使用的技术。只要有可能,企业就会尽可能地赞助此类项目。第三阶段由基于三脚架的系统和来自加利福尼亚的非营利性公司主导,发展并普及了激光扫描的应用。最后,在第四阶段,汽车和移动计算机行业正在推动传感器的商品化。本文发表时,第四阶段仍处于进行中。