在2023年,Pothovoltaic(PV)发电的全球安装能力打破了另一个记录。国际能源机构最近发布了2023年的年度报告显示,去年,全球PV发电的新安装能力约为375 GW,增长了30%以上(Szalóczy等人,2024年)。中国是世界上最大的光伏市场和产品供应商(Fu等,2024)。但是,分布式PV发电的固有间歇性和波动引入了相当大的不确定性,因此需要对PV场景进行建模,以减轻这种不确定性并支持PV行业的增长。在影响PV输出的各种因素中,天气条件在引起光伏生成的爆发和不确定性方面起着重要作用。然而,当前的绝大多数PV场景生成文献都会直接产生PV场景,这可以忽略天气对PV的重要影响(Cai等,2023)。为了说明与天气相关的不确定性并对PV发电模型施加更严格的物理约束,PV方案是通过模拟天气场景模拟的,在模型中既有特定的院子和通用性。因此,开发全年天气情况的随机模拟模型对于为PV发电建模提供准确的天气信息至关重要(Rohani等,2014)。当前的天气生成模型主要依赖于涉及概率计算的数学方法。li et la。提出了一个两阶段的方案。Sparks等。最常见的方法是将天气数据的分布直接拟合概率分布,例如β分布后的阳光强度(Rathore等,2023)和Weibull分布后的风速(Hussain等,2023)。在第一个阶段,天气序列是通过单位多变量天气发生器模拟的,在第二阶段,经验副方法用于重现可变量的相互间隔和相间依赖性以及时间结构(Li等,2019)。理查森(Richardson)基于动态的两参数伽马分布模型和两个参数β分布模型提出了WGEN(Richardson,2018)。WGEN目前是广泛使用的天气生成器模型之一,许多其他天气生成器模型是根据WGEN的改进和扩展而开发的,例如美国农业农业部农业研究服务部开发的小木屋。通过将部分时间序列转换为推断的线性函数模型,提出了一种新颖的方法,将天气变量视为具有时间行为的高斯变量(Sparks
在各种声学环境中,在各种声音环境中实现强大的语音分离,并带来了一个开放的挑战。尽管现有的数据集可用于训练分离器以获取特定方案,但它们并未在各种现实世界中概括地概括。在本文中,我们提出了一条新型的数据模拟管道,该管道从一系列声学环境和内容中产生各种培训数据,并提出了新的培训范式,以提高一般语音分离模型的质量。具体来说,我们首先引入AC-SIM,AC-SIM是一种数据模拟管道,该管道结合了内容和声学的广泛变化。然后,我们将多个培训目标纳入置换不变训练(PIT),以增强训练有素的模型的分离质量和概括。最后,我们在分离界和基准之间进行了全面的观察和人类听力实验,以验证我们的方法,从而对非同源和现实世界测试集进行了实质性改进。索引术语:语音分离,数据模拟,多损失优化
调整甲基C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 assocComp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 。 。 。 。 。 。 。 。 13 数据模拟。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 14 diffMethPerChr 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 摘录。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 ..................................................................................................................................................................................17 filterByCoverage ..................................................................................................................................................................................................................19 getAssembly ..................................................................................................................................................................................................................................................19 getContext ..................................................................................................................................................................................................19 getContext ..................................................................................................................................................................................19 ..................................................................................................................................................................................................................................................................................22 获取Correlation ..................................................................................................................................................................................................................................................................................................................................................................23 获取CoverageStats ..................................................................................................................................................................................................................................................................................................................................................................................................24 获取Data ..................................................................................................................................................................................................................................................................................................................................24 获取Data .................. ... . . . 28 getMethylDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 。。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 47
GAN 使用患者历史数据模拟病情进展,为临床医生提供宝贵见解。它们有助于了解疾病如何随时间演变,并改善整体管理和治疗策略。在外科手术增强现实中,GAN 擅长创建合成信息叠加层,因为它们能够生成逼真且多样的模式。GAN 生成的合成叠加层增强了外科医生可实时获得的视觉信息,有助于在复杂的外科手术环境中做出更明智和准确的决策。此外,在康复和假肢领域,GAN 凭借其生成逼真且多样的模式的能力,为定制辅助设备的开发做出了贡献,最终提高了残疾人士的行动能力和生活质量。
由于风电场发电具有间歇性,发电量经常超过或未达到场地的出口限额。超过出口限额的多余发电量将被视为违规,并可能导致当地电网运营商罚款。超过出口限额的多余能源可用于补充发电量较低的时期,从而平滑风电场的产出,并提高场地的总产出。飞轮能够承受高循环率,因此非常适合在此情况下充当能量储存器。本文利用真实数据模拟与飞轮储能系统 (FESS) 协同运行的风电场,并评估不同储能容量的有效性。c ⃝ 2020 由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
我们引入了Inmoose,这是一种旨在OMIC数据分析的开源Python环境。我们说明了其批量转录组数据分析的功能。由于其广泛的采用,Python在对生物信息学管道(例如数据科学,机器学习或人工智能(AI))中越来越重要的领域中已成为一种事实上的标准。作为一种通用语言,Python的多功能性和可扩展性也被认可。Inmoose旨在将历史上用R的最先进的工具带入Python生态系统。我们的目的是为R工具提供替换,因此我们的方法专注于对原始工具成果的忠诚。第一个开发阶段集中于批量转录组数据,当前功能包括数据模拟,批处理效应校正以及差分分析和荟萃分析。
摘要 本合集的 63 篇论文包括两篇主题演讲:《使用交互式视频进行数据模拟:一种应用》(Joseph V. Henderson)和《智能辅导系统:实践机会和解释模型》(Alan Lesgold)。其余论文分为五个主题:(1) 人工智能,包括智能计算机辅助学习、问题解决、人工智能和编程(15 篇论文);(2) 交付系统,包括远程学习、通信和硬件(9 篇论文);(3) 发展,包括交互式视频、模拟、创作、计算机管理学习和基于计算机的培训(12 篇论文);(4) 研究/评估和未来方向,包括研究、政策/规划和哲学方面(21 篇论文);(5) 软件教程,包括计算机辅助学习工具和商业产品应用(4 篇论文)。正文附有各种图表和参考文献每篇论文均有提供。(EW)
生成对抗网络 (GAN) 及其扩展开辟了许多令人兴奋的方法来解决众所周知且具有挑战性的医学图像分析问题,例如医学图像去噪、重建、分割、数据模拟、检测或分类。此外,它们以前所未有的真实感合成图像的能力也使人们希望借助这些生成模型解决医学领域长期缺乏标记数据的问题。在这篇评论论文中,对 GAN 在医学应用方面的最新文献进行了广泛的概述,彻底讨论了所提出方法的缺点和机会,并阐述了未来的潜在工作。我们回顾了截至提交日期发表的最相关的论文。为了快速访问,我们将基本细节(例如底层方法、数据集和性能)制成表格。http://livingreview.in.tum.de/GANs_for_Medical_Applications/ 提供了一个交互式可视化界面,对所有论文进行了分类以保持评论的活力。
摘要,监督机器学习方法从生物学家的惯性测量中识别行为模式已成为行为生态学的标准工具。几种设计选择可以影响识别行为模式的准确性。这样的选择是包含或排除在机器学习模型培训数据中包含不仅是单个行为(混合段)组成的细分。目前,常见的实践是在模型培训期间忽略此类段。在本文中,我们检验了以下假设:在模型训练中包括混合段将提高准确性,因为该模型在测试数据中识别它们的表现更好。我们使用在四个加速度计数据数据集上进行了一系列数据模拟,并从四个研究物种(Damaraland mole鼠,Meerkats,Meerkats,Olive Baboons,Polar Bears)获得了一系列数据模拟。结果表明,当大量测试数据是混合行为段(高于10%)时,包括机器学习模型培训中的混合段可提高分类的准确性。这些结果在四个研究物种中是一致的,并且在混合段内的片段长度,样本量和混合物程度的变化稳健。但是,与未经混合段的训练的模型相比,在某些情况下(尤其是在狒狒中)模型(尤其是在狒狒)模型中显示出仅包含单个行为(纯)段的测试数据的准确性降低。在这种情况下,应避免将混合段过量包含在培训数据中。基于这些结果,我们建议当预期分类模型处理大量混合行为细分(> 10%)时,将它们包括在模型培训中是有益的,否则,这是不必要的,但也不有害。当时有一个基础假设培训数据包含的混合段率要比要分类的实际(未观察到的)数据更高 - 可能发生这种情况,尤其是在收集训练数据的情况下,并用于将数据分类并从野外分类。关键字身体加速器,生物遗传,机器学习,动物行为
简介 [1] 图的 T 下标可以通过使用不同翻转角和/或重复时间 (TR) 获取的损坏梯度回忆回波 (SPGR) 图像计算得出。信号强度与翻转角和 TR 之间的关联函数是非线性的,但目前广泛使用的是 Gupta 于 1977 年 [1] 提出的线性形式 [1-6]。利用该线性模型,可以用线性最小二乘 (LLS) 法估计 [1] 的 T 下标,该方法具有计算效率高的优点。然而,我们的初步研究发现,使用这种 LLS 方法估计的 [1] 的 T 下标普遍存在偏差且被高估 [7]。我们提出了一种新的加权线性最小二乘 (WLLS) 方法,该方法在拟合中使用调整后的不确定性。所提出的 WLLS 方法用不确定性对每个数据点进行加权,该不确定性可校正由非线性模型转换为线性模型产生的噪声贡献。使用数值和人脑数据模拟来比较使用 LLS、WLLS 和非线性最小二乘 (NLS) 方法估计的 [1] 的 T 下标的准确性。