人工智能 (AI) 和机器学习 (ML) 代表了计算机科学和数据处理系统的重要发展,可用于增强几乎所有技术支持的服务、产品和工业应用。人工智能和计算机科学的一个子领域称为机器学习,其专注于使用数据和算法来模拟机器的学习过程并提高系统的准确性。机器学习系统可应用于 CNC 机床的切削力和切削刀具磨损预测,以延长加工操作期间的切削刀具寿命。可以使用先进的机器学习系统获得 CNC 加工操作的优化加工参数,以提高零件制造过程的效率。此外,可以使用先进的机器学习系统预测和改进加工部件的表面质量,以提高加工零件的质量。为了分析和最小化 CNC 加工操作期间的功耗,机器学习被应用于 CNC 机床能耗的预测技术。本文回顾了机器学习和人工智能系统在数控机床中的应用,并推荐了未来的研究工作,以概述当前在数控加工过程中机器学习和人工智能方法的研究。因此,可以通过回顾和分析已发表论文中的最新成果来推动研究领域的发展,从而为人工智能和机器学习在数控机床中的应用提供创新的概念和方法。
CNC 机器是一种先进的制造工具,它使用计算机软件来控制机床的运动和操作。CNC 机器可用于自动化各种制造过程,从切割和钻孔到铣削和车削。CNC 机器的主要组件包括计算机、控制器、一个或多个电机以及切割或成型工具。计算机用于创建要生产对象的数字模型,然后由控制器将其转换为机器代码。一个或多个电机用于沿着机器代码指定的所需路径移动切割或成型工具。CNC 机器的主要优势之一是它们能够以高精度和一致性生产高精度和复杂的零件。这是因为 CNC 机器能够以手动机器无法达到的精度水平执行高精度和复杂的运动。1,2 CNC 机器的另一个优点是它们的多功能性。CNC 机器可用于生产各种产品,包括机械零件、电子元件,甚至复杂的医疗设备。这使得它们在从航空航天和汽车制造到电子和医疗设备开发等各种行业中都非常有用。数控机床有各种尺寸和配置,从适合家庭爱好者的小型台式机到能够生产大型工业部件的大型工业机器。一些常见的数控机床类型包括铣床、车床、路由器和等离子切割机。3,4 除了精度和多功能性之外,数控机床还提供许多其他好处,包括提高生产效率、降低劳动力成本和提高安全性。通过自动化制造过程,数控机床可以帮助制造商以比传统制造方法更低的成本、更快的速度和更高的效率生产高质量的产品。5 总体而言,数控机床是现代制造业中的关键工具,提供手动机器无法实现的精度、效率和多功能性。随着技术的不断发展,数控机床可能会变得更加先进和强大,使其成为各种制造领域中越来越重要的工具
• 金属加工:现代精密车床、数控机床和手动铣床。 • 焊接:自动 TIG 焊接车床、轨道焊接、手动焊接机。 • 真空:高真空泵、站和室、氦气泄漏检测器。 • 钎焊、热处理和金属多孔材料生产:高温真空炉、
上海理工大学机电工程学院,上海 200093 通讯作者,电子邮箱:fkg11@163.com 摘要 随着主轴转速的提高,发热成为高速电主轴的关键问题。为了获得电主轴的实际热行为,本文开发了热特性数字孪生系统。热特性数字孪生的原理是通过数据采集系统和修正模型映射和修正热边界条件来模拟机床的热行为。所提出的数字孪生系统包括数字孪生软件、数据采集系统和嵌入传感器的物理模型三个模块。数字孪生软件基于 Qt 使用 C++ 编程语言和 ANSYS 二次开发开发。提出热边界修正模型,利用数据采集系统测得的热关键点温度来修正发热和接触热阻。为了验证数字孪生系统的预测精度,在电主轴上进行了试验。实验结果表明,数字孪生系统预测精度大于95%,对提高热特性仿真与热优化的精度具有重要意义。 关键词 数字孪生·热特性·精度仿真·电主轴 1.引言 热行为预测在数控机床热优化中具有重要意义。电主轴是数控机床的核心,也是其主要热源。数控机床向超高速、超高精度方向发展的趋势,对电主轴热特性的精确分析提出了更严格的要求。影响主轴温度场和热变形准确预测的主要因素来自产热和接触热阻两个方面,在主轴工作过程中,产热和接触热阻都不是恒定的。由于主轴工作时伴随产热,引起热变形,使主轴零部件接触面间产生热应力,接触压力的变化使接触热阻和内部热源产热量也发生变化。为了提高热行为预测精度,热特性数字孪生成为模拟主轴单元温度场分布的最佳选择。数字孪生是指通过构建数字化虚拟实体与物理实体之间的映射关系,实现虚实映射。它将物理空间中的物理实体映射到数字空间,具有数据映射、分析决策、控制执行等功能。近年来,许多学者对数字孪生进行了卓有成效的研究工作,形成了成熟的理论体系。在理论方面,数字孪生的概念最早由Grieves教授[1]于2003年提出,随后NASA将该概念应用于阿波罗计划中的飞行器。Dmitry Kostenko等[2]研究了设备数字孪生在静态和动态领域的应用
寻求大规模杀伤性武器的国家和非国家行为者有两种选择:购买或制造。然而,一个国家或非国家行为者获取大规模杀伤性武器的途径在很大程度上取决于资源获取、技术能力和产能以及政治意愿等因素。例如,非国家行为者可能在建设必要基础设施方面能力有限,因此倾向于在公开市场上采购两用商品和服务。尽管拥有资源和技术知识,但大多数国家仍然需要外国材料和技术。这些技术既包括有形商品(材料、零部件和制造设备,如高端钢材和计算机数控机床),也包括“无形资产”,如数据、设计信息和知识。
普吉特湾海军造船厂和中级维修设施高压电工 (NAVFAC):为 PSNS 和其他西北地区海军设施维护、维修和安装高压变电站和配电设备。船舶装配工(车间 11):制造、安装、改装和维修海军舰艇的内部和外部组件和结构。这些结构包括舱壁、地基、门、甲板、舱口、上层建筑、油箱、海底箱、浮筒和甲板室。钣金技工(车间 17):设计、制造、安装和维修海军舰艇上的通风设备、家具、轻型舱壁和门。焊工(车间 26):在海军舰艇的大修、维修和建造中使用复杂的热工艺连接各种金属。电镀工(车间 31):完成各种金属表面的功能性和工业性槽镀和便携式选择性电镀以修复船上部件。其他工艺包括使用抛光技术对各种金属表面进行化学清洗和尺寸恢复。电子工业控制机修工(车间 31):维护、排除故障和修理集成到工业系统(如数控和计算机数控机床、激光测量系统、自动焊接系统、平衡和测量机以及感应炉)的所有线性、数字和光纤电子设备。机械师(车间 31):各种船舶部件的内部维修和测试。使用传统和计算机控制机械制造新部件。能够加工从 ¼ 英寸螺钉到 50 英尺长的推进轴的所有东西。生产机械电工(车间 06):维护、安装、修理、改造和排除故障多种类型的工业机械、工具和设备。机械、工具和设备包括:车床、铣床、压力机、焊接和火焰切割设备、热封机和橡胶磨机。船用机械机修工(车间 38):排除故障、修理、更换和维护海军舰艇上的各种机械系统。工作范围覆盖整艘船——从桅杆天线到螺旋桨,从船头到船尾。船舶电工(车间 51):安装、连接和操作测试船上电气系统和组件,包括电力和照明系统、声控电话、电热和通风设备。船舶管道工(车间 56):安装、维修、改造和更换海军舰艇上的管道系统。系统包括饮用水、航空燃料和高压蒸汽。