二维材料中的光学活性缺陷,例如六方氮化硼 (hBN) 和过渡金属二硫属化物 (TMD),是一类极具吸引力的单光子发射体,具有高亮度、室温操作、发射体阵列的位点特定工程以及可通过外部应变和电场进行调谐的特性。在这项工作中,我们展示了一种新方法,可在无背景的氮化硅微环谐振器中精确对准和嵌入 hBN 和 TMD。通过 Purcell 效应,高纯度 hBN 发射体在室温下表现出高达 46% 的腔增强光谱耦合效率,这几乎超出了无腔波导发射体耦合的理论极限和之前的演示。该设备采用与 CMOS 兼容的工艺制造,不会降低二维材料的光学性能,且对热退火具有稳定性,并且在单模波导内量子发射器的定位精度达到 100 纳米,为具有按需单光子源的可扩展量子光子芯片开辟了道路。
海军使用大量的氢氟化合物(HFC)作为空调(AC)植物中的制冷剂。这些植物的冷却能力从125到1100制冷吨(RTON),并为各种任务关键冷却应用提供冷藏水,包括重要的电子,武器系统和人员。使用这些相同的HFCS制冷剂的泵送两相冷却系统直接冷却了许多未来的高能电子系统。最近的立法以及国际协议可能会影响这些HFC的未来可用性和成本。尤其是,《美国创新与制造法》(AIM)法案(公共法116-260)要求在未来15年内减少氢氟化合物的85%。本文总结了所采取的挑战,机会和最初的研究工作,以识别适合在海军平台上使用的低GWP替代品。
摘要 退相干是量子力学领域的一个相对较新的概念。尽管该领域的先驱者一定已经明白量子叠加中相位相干的丧失是量子测量问题出现确定结果的根本原因,但直到量子力学提出 60 年后,量子测量问题才以退相干的形式得到处理,如 Joos 和 Zeh 在 1983 年的一份报告中所述 [1]。然而,此后不久,该理论得到了进一步的发展,人们开始实验测量各种系统中的实际退相干率。今天,退相干之所以成为主要关注的问题,还有另一个原因,即量子通信系统中必须保持叠加态不受干扰,而退相干对其实际应用造成了很大的限制。退相干出现在开放量子系统中,其中所考虑的基本系统与环境的相互作用相对较强。对于极真空中的小原子系统,退相干时间可能长达数秒,尽管在大多数液体和固体中,退相干时间低于目前可测量的时间(即不到飞秒的几分之一),因为液体和固体与周围分子或原子排列的耦合很强。在隔离良好的粒子系统中,退相干相对较慢,这在几个文献中已有描述