来自:Jill ZamEk发送时间:2024 年 11 月 21 日星期四 1:48 AM 收件人:DiabloCanyonEnvironmental.Resource 主题:[External_Sender]“NUREG-1437,补编 62,草案”,案卷 ID NRC-2023-0192 Diablo Canyon 附件:Jill ZamEk 起草的 SEIS 草案.pdf 2024 年 11 月 Jill ZamEk、Arroyo Grande 提交的评论“NUREG-1437,补编 62,草案”,案卷 ID NRC-2023-0192 核电站许可证续期通用环境影响声明,补编 62,关于 Diablo Canyon 核电站 1 号和 2 号机组许可证续期第 2.1.7 节涉及运营和维护。这份 424 页的报告中没有任何地方提到 1 号机组反应堆压力容器的脆化。由于 NRC 豁免,它已有 20 多年未进行测试,但 NRC 建议批准 20 年的许可证续期。我反对这一结论,因为没有证据表明 1 号机组可以安全运行。第 2.4.3.3 节讨论了不采取行动的替代方案。其结论指出:“第 2.3.2.2 节讨论的风能、太阳能和电池备用电源等能源组合,以及购买电力和需求侧管理,可以相互补充并减少间歇性发电问题。”我支持不采取行动的替代方案。我建议将我们的纳税人和纳税人的钱投资于带有电池备用电源的可再生能源。第 3.4.5 节重点关注地震问题。“加州参议院第 846 号法案于 2022 年 9 月通过,以延长 Diablo Canyon 的运营,并包括 PG&E 进行更新地震分析的契约。 PG&E 于 2024 年 3 月 6 日发布了该分析的结果(PG&E 2024-TN10192)。ER 中未讨论这些结果,因为在 ER 提交给 NRC 时,这些结果尚未公开发布。NRC 工作人员独立审查了更新后的分析报告的相关部分,以确定其中是否提供了可能改变 ER 对 Diablo Canyon 站点及其附近受影响地质环境描述的新的重要信息。关于 Hosgri 断层和某些其他断层的滑动速率有了新的信息……尽管有新的滑动速率数据,但 NRC 工作人员得出结论,这些构造结构对 Diablo Canyon 站点及其附近地质环境的影响不会与当前许可期限内发生的影响不同,因为根据更新后的分析没有报告任何新的断层。”对于如此重要的安全要素,这个过程在我看来听起来很马虎。我希望 NRC 考虑 Peter Bird 博士的证据,该证据表明,核电站正下方的地震断层是垂直逆断层,这意味着它们可能引发比以前认为的更大的地面运动。PG&E 大大低估了 Diablo Canyon 发生严重地震的可能性。第 3.5.1.3 节。2 号法案涉及国家污染物排放消除系统。Diablo Canyon 采用的直流冷却系统违反了《清洁水法案》。但 PG&E 一次又一次地获得豁免,并被允许继续破坏海洋环境。
组件的生命周期越来越短,因此开发时间也越来越短,这是当今工业界的趋势。除此之外,组件的表面形状越来越复杂,结构也越来越复杂,必须进行适当的制造和测试。工业计算机断层扫描技术通过在最短的时间内提供最多的信息来应对这一挑战。
发现,在负载下测量的包装中的瞬时不平衡会随着平行字符串的添加以及较宽的母线电阻分布而增加。这可能会驱动包装细胞不均匀降解。此外,母线中的开路断层似乎会导致永久性失衡和包装容量的严重缺乏。
许多量子算法具有指数运行时间优势,而其经典算法则是大量的量子和量子门。在科学或工业上有趣的量表上进行了包括估计具有数百个旋转轨道和电子的分子的能量水平[13,26],并考虑了具有数千个位的RSA整数[8]。 解决这些问题至少需要许多量子位来编码输入,在这些输入上,将数十亿至数万亿个基本量子门应用于这些输入上。 在大规模上,嘈杂的物理硬件上的量子计算需要量子校正代码中的逻辑量子位上容易且易于故障。 尽管可以在许多校正代码上在横向上实现,因此可以在横向上实现,因此可以通过非电压门(通常是t门)增强它们,以实现它们,以实现它们,以实现t门,以实现通用量子计算。 作为t门的同时持续实现[28],通过诸如魔术状态蒸馏[2]或规格固定[20]的诸如魔术状态蒸馏之类的技术含量[28]实现了耐断层的t门,这些技术的成本更高。 因此,T门的总数是理解易于断层量子算法的现实成本的好启发式。 优化任意量子算法分解为最少数量的T门的分解是包括估计具有数百个旋转轨道和电子的分子的能量水平[13,26],并考虑了具有数千个位的RSA整数[8]。解决这些问题至少需要许多量子位来编码输入,在这些输入上,将数十亿至数万亿个基本量子门应用于这些输入上。在大规模上,嘈杂的物理硬件上的量子计算需要量子校正代码中的逻辑量子位上容易且易于故障。尽管可以在许多校正代码上在横向上实现,因此可以在横向上实现,因此可以通过非电压门(通常是t门)增强它们,以实现它们,以实现它们,以实现t门,以实现通用量子计算。作为t门的同时持续实现[28],通过诸如魔术状态蒸馏[2]或规格固定[20]的诸如魔术状态蒸馏之类的技术含量[28]实现了耐断层的t门,这些技术的成本更高。因此,T门的总数是理解易于断层量子算法的现实成本的好启发式。优化任意量子算法分解为最少数量的T门的分解是
要解决的第一个区域是教堂斯特雷顿断层以东的什罗普郡的一部分,以及搁置的架子,位于教堂斯特雷顿断层以西。这包括奥陶纪货架区域,浅海陆地区域和更深的caradoc年龄海洋区域,其中包含与不同海洋条件相关的组合。每个组合都与特定的化石有关,但由于进化,序列底部与浅水环境相关的化石在序列的顶部是不同的,因此更容易将环境带称为底栖底栖组合,底栖组合1在岸边和组件附近发生2至5次到5。可以确定每个底栖组合的一般性。例如,浅水环境显示出丰富的化石,但物种的数量通常很少。这是因为海岸附近的环境压力很大,底物的偏移和水温是可变的。因此,只有少数宽容的物种,但是那些可以生存的物种可以大量这样做,因为他们没有竞争对手。从岸上化石远处驶出,但物种数量增加,直到货架上的区域不太可能生存,因为很少有底部的居民生存。
摘要 量子态断层扫描旨在找到量子态的最佳描述——密度矩阵,是量子计算和通信中必不可少的组成部分。状态断层扫描的标准技术无法跟踪变化的状态,并且在存在环境噪声的情况下通常表现不佳。尽管理论上有不同的方法可以解决这些问题,但迄今为止实验演示很少。我们的方法,矩阵指数梯度 (MEG) 断层扫描,是一种在线断层扫描方法,允许状态跟踪,从第一次测量开始动态更新估计的密度矩阵,计算效率高,即使数据非常嘈杂也能快速收敛到良好的估计值。该算法通过单个参数控制,即其学习率,它决定了性能,并且可以在模拟中根据单个实验进行定制。我们展示了在以光子横向空间模式编码的量子系统上进行 MEG 断层扫描的实验实现。我们研究了我们的方法在静止和演化状态以及显著的环境噪声下的性能,并发现在所有情况下保真度约为 95%。
关键矿物质和金属的主要沉积物(例如铜,钴,铅和锌)通常发生在碳酸盐沉积物内的断层,断裂或其他高孔隙区域的直接附近。这种矿化可以在这些碳酸盐托管的渗透性网络中混合到现有的液体中,使断层,断裂或高孔隙率区域的形成日期。所得的液体混合以及与周围碳酸盐岩的相关化学交换在系统内部产生不平衡,从而诱导矿化。流体岩石相互作用实验表明,随着流体中的CA含量的增加,随着它溶解在周围的碳酸盐中,它可以作为Zn-PB矿物沉淀的催化剂[1],并在与H 2 s含H 2 s碳含量时产生与Spherite(Zns)降水有关的缓冲效果。这些发现与研究H 2 S-地形系统中的合并腐蚀和尺度的实验中的爆发岩沉淀之间的联系是一致的[2]。数值建模显示出对碳酸盐中的baryte形成的相似作用[3]。
低温电子断层扫描(Cryo-ET)是一种生产细胞环境的高度脱尾3D图像(称为断层图)的技术。Cryo-Et通常是唯一可以在其天然环境中实现蛋白质和细胞结构几乎原子分辨率的技术。针对蛋白质结构确定的低温 - 肛门肛门技术的基本步骤是找到pogractions中感兴趣的蛋白质的所有实例,这是一种称为粒子拾取的任务。由于信噪比较低,靶蛋白的伪像的存在和巨大的多样性,颗粒拾取是一个具有挑战性的3D对象检测问题。现有的粒子采摘方法要么慢,要么仅限于选择一些感兴趣的小部分,这需要大量注释且难以获得训练数据集。在这项工作中,我们提出了Propicker,这是一种快速和通用的粒子采摘器,可以检测到训练集中包含的颗粒,并且可以在几分钟内处理断层图。我们的迅速设计允许根据输入提示选择性地检测体积中的特定蛋白质。我们的经验表明,培养基可以与最先进的通用拾取器达到相同的性能,同时更快地达到数量级。
发生在量子电路内部层的测量(中电路测量)是一种重要的量子计算原语,最显著的特点是用于量子误差校正。中电路测量既有经典输出也有量子输出,因此它们可能会受到终止量子电路的测量所不存在的误差模式的影响。在这里,我们展示了如何使用一种称为量子仪器线性门集断层扫描 (QILGST) 的技术来表征由量子仪器建模的中电路测量。然后,我们应用该技术来表征多量子位系统内超导传输量子位的色散测量。通过改变测量脉冲和后续门之间的延迟时间,我们探索了残余腔光子群对测量误差的影响。QILGST 可以解析不同的误差模式并量化测量的总误差;在我们的实验中,对于超过 1000 纳秒的延迟时间,我们测得的总误差率(即半钻石距离)为 ϵ ⋄ = 8 . 1 ± 1 。 4%、读出保真度为 97 . 0±0 . 3%、测量 0 和 1 时输出量子态保真度分别为 96 . 7±0 . 6% 和 93 . 7±0 . 7%。