我一直对航空航天工程很感兴趣。但是,由于萨尔瓦多当时没有大学教授航空航天工程,所以我首先在国内大学唐博斯科学习航空学。有了那段经历,我搬到了韩国,在釜山国立大学获得学士学位。在韩国,我不仅有机会在大学学习航空航天工程,而且有幸参加了韩国航空航天研究院 (KARI) 举办的 2017 年国际空间培训。KARI 邀请发展中国家的代表参加该计划,我很幸运能有这个机会。这是一个为期两周的精彩课程,我获得了有关遥感和地球静止轨道卫星技术的理论培训,有机会参加 KARI 总部和罗老空间中心的实际测试设施的技术访问,并参观韩国与空间相关的初创企业和公司。我深入学习了如何从各个角度利用空间技术帮助发展中国家。我在韩国时,从萨尔瓦多航空航天学院听说了 PNST,这是萨尔瓦多的一个非政府组织,该组织开发与太空相关的教育项目,以促进萨尔瓦多的太空社区发展。当我听说 PNST 时,我既兴奋又紧张,因为从提供的信息中可以看出,这个项目的竞争一定很激烈……但我还是提交了申请,现在我来了!PNST 如何改变了你的教育/职业道路?它为你带来了哪些机会?
反应性直流磁控溅射是一种理想的技术,可用于生产具有可控微结构和特性的氧化物、氮化物和碳化物薄膜。随着分压控制技术的出现,可以以接近金属(如 TiN、ZrN)的溅射速率,或至少以比传统 RF 溅射(如 TiO 2 )更高的速率溅射导电反应产物(氧化物、氮化物和碳化物)。但在沉积非导电材料(如 Al 2 O 3 和 SiO 2 )方面仍然存在严重的限制,因为在溅射靶上形成非导电层会导致电弧。虽然这些薄膜可以通过 RF 磁控管或 RF 二极管技术溅射,但对于许多应用来说,这种速率是不经济的。电源设计和构造方面的最新电子发展已经产生了能够进行双极脉冲直流操作的商用设备。该设备可以以高速率反应溅射非导电材料。所涉及的频率(kHz 至 100 kHz)比 RF 频率(13.56 MHz)低得多,并且在集成到物理系统方面出现的问题较少。控制和电子干扰问题几乎被消除。我们报告了使用这种商用设备对脉冲直流反应溅射的初步评估。
事实上,最近我们可以观察到机器人和自主系统存在大量困难 [112, 141]。此类系统将在社会中得到更广泛的应用,从而提高其安全关键性水平 [70],并需要严格的监管制度。结构化保证案例提供了一种成功的监管验收方法,这些案例提供了由证据支持的可理解且不可废止的安全论据 [72, 77, 104]。然而,无论是否符合 IEC 61508 1 和 DO-178C 2 等标准,此类保证案例的创建都很费力,维护和发展都很复杂,并且必须通过评估过程进行严格检查,以确保满足所有义务并实现对论据的信心 [68, 160]。尽管如此,这些问题正是 FM 旨在克服的。
摘要 直到最近,对于医院管理的癌症药物的概述仍然有限。挪威癌症登记处已获准收集为每个患者提供的肿瘤医学治疗数据,但迄今为止,报告都是手动的、耗时的和不完整的。除了进行昂贵的图表审查外,还没有可能对医院管理的癌症药物进行研究。试图改进手动报告的努力还不够,收集癌症药物数据的最有效方法是通过用于订购/管理肿瘤医学治疗的医院系统。INSPIRE(增加药物报告)项目旨在自动以电子方式从医院系统收集癌症药物数据到癌症登记处。该项目是 12 家制药公司、挪威制药公司协会、挪威癌症协会、Inven2、挪威癌症登记处和四个地区卫生信托基金之间的独特合作。在本文中,我们介绍了 INSPIRE 项目、数据收集以及可用的时间和数据类型。癌症登记处的这些新药物数据为挪威的癌症药物流行病学研究提供了新的机会。这是一篇开放存取文章,根据知识共享署名许可分发,允许任何媒体进行无限制的使用、分发和复制,前提是对原作品进行适当引用。引言一般来说,癌症治疗包括手术、放射疗法和各种药物疗法,如化疗、免疫疗法、靶向疗法或激素疗法。虽然挪威癌症登记处对患者的手术程序和放射治疗有广泛的概述,但登记处缺乏关于肿瘤医学治疗的数据 (1)。挪威的其他癌症药物来源是挪威处方数据库 (NorPD) (2) 和挪威患者登记处 (NPR) (3)。NorPD 包含了向门诊患者分发药物的完整信息。这包括患者在家服用的癌症药物,例如蛋白激酶抑制剂。NorPD 目前正在现代化改造,以成为“Legemiddelregisteret”,即挪威处方药登记处(新的英文名称尚未最终确定)(4)。患者登记处(NPR)涵盖了挪威所有公共专科医疗服务(3)。为区域卫生当局提供服务的私人机构和医疗专家也包括在 NPR 中,专科医疗服务开具的药物报销数据(所谓的 H 处方,下文将进一步解释)也包括在内。然而,挪威一直缺乏包括医院管理的药物与详细临床病理特征相关的详细概述。
到目前为止,几乎全世界所有国家都发现了引起急性呼吸道综合征的冠状病毒感染。SARS-CoV-2 病毒在全球蔓延,已成为世界大流行病,目前尚无有效且普遍接受的常规治疗方法。由于现有的紧急情况,大多数可用于治疗 COVID-19 的药物只有在探究其安全性和对抗 SARS-CoV 的有效性的某些数据后才被允许使用。目前,只有洛匹那韦/利托那韦和瑞德西韦是唯一被纳入 COVID-19 治疗公认管理程序的抗病毒药物;一种可接受的替代方案可能是包括羟氯喹和阿奇霉素的联合疗法。鉴于现有情况,考虑到关于感染病理生理学的所有可用知识,许多通常用于治疗其他疾病的药物现在被建议作为治疗 COVID-19 的可能方法。
历史上,传染病给人类带来了沉重的打击。历史一再警告我们,一种致命的病原体就能杀死数百万人。14 世纪席卷欧亚大陆的黑死病大流行夺走了多达 1 亿人的生命( Cohn,2008 ),1918 年的西班牙流感在不到 2 年的时间内夺走了 5000 多万人的生命( Taubenberger and Morens,2019 )。这种情况在 20 世纪开始发生变化,抗生素和疫苗这两项了不起的成就拯救了数亿人的生命,使他们免于致命感染。如果我们没有针对天花、黄热病、脊髓灰质炎和其他致命病原体的疫苗,难以想象会有多少人丧生。如果我们没有抗生素,外科病房会发生什么情况则令人难以想象。一个令人愉快的巧合是,导致这些巨大成功的工具和技术往往是由微生物本身提供的:抗生素是由细菌和真菌产生的,疫苗通常是减毒或灭活的微生物。同样令人着迷的是,包括病毒和细菌在内的微生物教会了我们分子语言,让我们理解生命最基本的过程,并启发我们开发强大的生物技术来预防和治疗各种危及生命的感染。现代健康科学的一个支柱是 DNA 生物学和重组 DNA 技术。正是细菌和病毒教会了我们 DNA 是遗传物质,以及 DNA 基因表达是如何执行和调控的。更值得庆幸的是,我们还从这些微生物那里获得了解码 DNA 序列和设计 DNA 克隆的分子工具。如今,下一代测序和元数据分析彻底改变了我们在诊断、预防和治疗层面管理传染病的方式。尽管取得了这些突破性的成就,但传染病仍然给公共卫生带来沉重的负担,每年造成 1000 万至 1500 万人死亡。为证明这一严重的全球影响,世界卫生组织 (WHO) 于 2019 年公布的全球十大健康威胁中有六项与传染病有关 (https://www.who.int/emergencies/ten-threats-to-global-health-in-2019)。这六大威胁包括全球流感大流行、抗生素耐药性、埃博拉和其他高威胁病原体、疫苗犹豫、登革热和艾滋病毒 (HIV)。这些传染性病原体和相关问题位列全球卫生挑战之首并非偶然。人类历史上经常发生流感疫情。我们根本无法从人类中根除流感病毒,部分原因是它们会从鸟类和其他动物的天然宿主偶尔传播给人类 (Olsen 等人,2006 年)。生产有效的季节性流感疫苗已经是一个挑战,这将是一项更加艰巨的任务,预测和准备应对不可预测但即将来临的流感大流行,这在目前并非不可能。几十年来,我们一直受益于抗生素的使用。然而,过度使用抗生素和其他不良医疗习惯加速了耐药细菌的出现。如果没有可持续的新抗生素渠道,也没有其他有效的细菌感染治疗方法,我们可能会死于多重耐药致病菌(也称为超级细菌)引起的感染。据美国疾病控制和预防中心报道,仅在美国,每年就有 35,000 人死于抗生素耐药性细菌感染。
该中心对部委和地方政府的城市规划进程产生了积极影响。在五位年轻工程师和规划师的支持下,两年内,A 区和 B 区一长串待处理和延迟的城市规划进程中的 68 个城市规划进程得到了审查、技术更新并最终获得批准。C 区的 45 个总体规划也进行了更新,以满足地方政府部门的技术要求。中心专家还参加了与不同委员会和私营部门规划师的讨论,以解决异议。最后,该中心支持开发和测试基于六个试点项目的城市设计手册:杰里科的“希沙姆宫”修复、Al Badan 的旅游区、Beit Eiba 的工业区、Qalqilia 的入口道路以及 Al Thahryah 和 Bani Naim 的公共空间。