摘要。本文讨论了随机激光器 (RL) 中的光收集问题。由于该系统发射的辐射由于其空间不相干性而呈朗伯辐射,因此设计、开发和测试了一种基于椭圆旋转镜的装置,以优化 RL 发射的辐射的收集。该系统提供了一种在多模光纤入口处注入发射能量的简单程序。所得结果表明,该装置的净能量效率为 35%,接近理论预期。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.60.1.010502]
1 简介 三维 (3D) 激光扫描仪多年来一直用于文化遗产、法医、3D 土地(地形)和“竣工”测量等应用。三维激光扫描仪使用安装在快速旋转头上的高速激光测距仪扫描环境,从而产生场景的高密度数字点云表示,可以根据需要进行存档和分析。通常,同轴安装的相机会同时记录全彩信息,以提供更逼真的 3D 图像。近年来,激光扫描仪的测距能力得到了提高,可以在数十米或更长的距离上实现亚毫米级精度和测距噪声。事实上,美国国家标准与技术研究所 (NIST) 最近报告称,他们开发了一款精度为 10 µm、测量范围为 10.5 m 1 的 3D 扫描仪。精度的提高,加上高价值制造业以及逆向工程和工厂维护等应用对以相对较低的成本快速获取高质量数据的要求不断提高,促使三维激光扫描仪从测量应用转向工程应用。随着 3D 激光扫描仪技术的普及和对精度要求的不断提高,对校准、性能验证和测量可追溯性的需求也随之增加。非接触式光学测量系统的校准和可追溯性问题非常复杂,不仅限于仪器本身系统误差的校准和补偿。例如,由于扫描激光与被扫描物体的材料和表面特性之间的相互作用以及激光束与表面的入射角,可能会出现显著的系统误差。然而,对于本文考虑的 3D 激光扫描仪类别,测距精度水平取决于仪器的几何误差和激光测距系统的精度。激光测距系统的校准相对简单,可以使用例如校准的长度工件或更精确的坐标测量系统(如激光跟踪器)或通过与参考干涉仪进行比较来进行。但是,没有涵盖激光扫描仪校准或性能验证的文献标准。在本报告的第 2 部分中,我们简要描述了激光扫描仪几何误差的数学模型。此外,NIST 进行的体积性能测试表明,校准后系统误差仍然很明显,这些误差可以归因于对几何对准误差的不完全补偿 2, 3 。因此,需要改进这些设备的校准方式,以充分发挥其潜力。因此,国家物理实验室 (NPL) 对使用“网络方法”校准 3D 扫描仪几何误差的可行性进行了初步调查 - 该方法之前由 NPL 为激光跟踪器校准而开发 4, 5 。在第 3 节中,我们总结了用于校准仪器误差的网络方法。在第 4 节中,我们介绍了用于测试激光扫描仪的方法。第 5 节介绍了结果和观察结果,第 6 节介绍了最后的总结和结论。2 激光扫描仪的几何误差模型 图 1 显示了激光扫描仪内部几何形状的理想表示。安装在固定底座上的旋转平台承载着激光源和旋转镜组件;平台绕着竖轴 Z 旋转。激光源的对准方式是使激光束与旋转镜的旋转轴(称为过境轴 T )同轴对准。激光束在点 O 处从旋转镜反射,该点位于镜面与旋转轴 T 和 Z 的交点处。镜子相对于轴 T 倾斜 45°,使得激光束从镜子反射到 NZ 平面上的点 P,其中 ON 垂直于 OT。
美国宇航局和欧空局已将 LiDAR 确定为实现安全精确着陆和交会对接的关键技术。此外,该技术对于难以观察到背景辐射的未来卫星任务和探测车应用至关重要。挑战来自任务参数的限制越来越严格。太空市场普遍倾向于低成本、高可靠性的紧凑型解决方案,而目前的 LiDAR 技术可能会在主要应用中失去相关性。ONEWeb、三星和 SpaceX 等公司的未来商业计划旨在发射总共超过 10,000 颗卫星,2019 年的概念演示任务已经开始,巩固了对这些企业的投资。LiDAR 技术非常适合清除太空垃圾等操作任务参数,但目前的 LiDAR 质量、体积、功率 (MVP) 预算、成本和开发时间在评估新太空应用提案时可能是一个挑战。当前的扫描 LiDAR 使用旋转镜来引导激光束。机械扫描导致解决方案体积庞大、速度相对较慢且耗电。该提案提出了一个项目,旨在加速开发现代一代激光雷达,以更好地适应日益增长的空间应用需求。
在许多科学的学科和应用中(例如人工智能和运营研究)中,对硬优化问题进行采样一组高质量的解决方案具有很大的实践相关性。主要的开放问题之一是基于蒙特卡洛技术的典型随机求解器缺乏恐怖性或模式崩溃,导致概括或缺乏对不确定性的鲁棒性。当前,尚无通用度量标准来量化各种求解器的性能缺陷。在这里,我们引入了一种新的多样性度量,用于量化NP-HARD优化问题的独立近似解决方案的数量。除其他外,它允许通过所需的多样性(TTD)进行基准测试求解器的性能,这是经常使用的时间到达(TTS)的概括。我们通过比较各种量子退火策略的采样能力来说明该指标。特别是,我们表明,不均匀的量子退火时间表可以通过控制时空分离的临界界面来重新分配和抑制拓扑缺陷的出现,从而使相对于TTS和TTD都具有优势,从而使得与标准量子退火计划相比,与TTD相对于TTD,以寻找稀有解决方案。使用路径综合蒙特卡洛模拟可用于多达1600吨,我们证明,在有效的近似张量张量网络收缩的指导下,量子波动的量子驱动驱动可以显着减少与本地场随机挫败的2D旋转镜的硬性局部性的比例。具体来说,我们观察到,通过创建一类算法量子相变,可以通过减少25%以上的难度样本实例的比例来增强溶液的多样性。